Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat4118 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
East China University of Science and Technology, Insitute of Fine Chemicals, Meilong Road 130, Shanghai, China, 200237, Shanghai, CHINA.
Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing crucial roles in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" AIEgen QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI).
View Article and Find Full Text PDFSmall
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi, 21422, China.
Bicontinuous structures are exquisite interpenetrating constructs with an optimal balance between connectivity and surface area. Such unique geometry favors exceptional mechanical properties and efficient inward mass diffusion essential for an absorbent material. Although bicontinuous structures are found across many length scales in nature, synthesizing artificial analogs using biological building blocks remains largely unexplored.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
Sulfur-fluoride exchange (SuFEx) reaction is an emerging class of click chemistry reaction. Owing to its efficient reactivity under physiological conditions, SuFEx reaction is used to construct covalent protein drugs. Herein, a covalent affibody-molecular glue drug conjugate nanoagent is reported, which can irreversibly bind with its target protein through proximity-enabled SuFEx reaction.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
The National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark. Electronic address:
Within the deep lung, pulmonary surfactant coats the air-liquid interface at the surface of the alveoli. This complex mixture of amphiphilic molecules and proteins modifies the surface tension and mechanical properties of this interface to assist with breathing. In this study, we examine the effects on pulmonary surfactant function by two industrially used compounds composing surfactants and polymers.
View Article and Find Full Text PDFToxicol Rep
June 2025
Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris F-75005, France.
Unlabelled: Fibroblasts are considered a key player in the wound healing process. Although this cellular family is constituted by several distinct subtypes, dermal fibroblasts are crucial thanks to their ability to secrete pro-regenerative growth factors, extracellular matrix (ECM) proteins and their immune and anti-inflammatory role. Sophorolipids (SL), sophorosides (SS) and glucolipids (G), mono-unsaturated (C18:1) or saturated (C18:0), glycolipids derived from microbial fermentation of wild type or engineered yeast , constitute a novel sustainable class of bio-based chemicals with interesting physicochemical characteristics, which allow them to form soft diverse structures from hydrogels to vesicles, micelles or complex coacervates with potential interest in skin regeneration applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!