Over the last few years, the use of new technologies for the support of elderly people and in particular dementia patients received increasing interest. We investigated the use of a video monitoring system for automatic event recognition for the assessment of instrumental activities of daily living (IADL) in dementia patients. Participants (19 healthy subjects (HC) and 19 mild cognitive impairment (MCI) patients) had to carry out a standardized scenario consisting of several IADLs such as making a phone call while they were recorded by 2D video cameras. After the recording session, data was processed by a platform of video signal analysis in order to extract kinematic parameters detecting activities undertaken by the participant. We compared our automated activity quality prediction as well as cognitive health prediction with direct observation annotation and neuropsychological assessment scores. With a sensitivity of 85.31% and a precision of 75.90%, the overall activities were correctly automatically detected. Activity frequency differed significantly between MCI and HC participants (p < 0.05). In all activities, differences in the execution time could be identified in the manually and automatically extracted data. We obtained statistically significant correlations between manually as automatically extracted parameters and neuropsychological test scores (p < 0.05). However, no significant differences were found between the groups according to the IADL scale. The results suggest that it is possible to assess IADL functioning with the help of an automatic video monitoring system and that even based on the extracted data, significant group differences can be obtained.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-141767DOI Listing

Publication Analysis

Top Keywords

video monitoring
12
monitoring system
12
dementia patients
12
automatic video
8
instrumental activities
8
activities daily
8
daily living
8
manually automatically
8
automatically extracted
8
extracted data
8

Similar Publications

Purpose: To investigate potential mechanisms of a digital rehabilitation intervention associated with improved mobility among adults undertaking rehabilitation.

Materials And Methods: Causal mediation analysis of the AMOUNT trial (ACTRN12614000936628). Participants were randomised to digitally-enabled rehabilitation (virtual reality video games, activity monitors, and handheld computer devices prescribed by a physiotherapist) and usual care or usual care alone.

View Article and Find Full Text PDF

Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.

View Article and Find Full Text PDF

LoRa Resource Allocation Algorithm for Higher Data Rates.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.

LoRa modulation is a widely used technology known for its long-range transmission capabilities, making it ideal for applications with low data rate requirements, such as IoT-enabled sensor networks. However, its inherent low data rate poses a challenge for applications that require higher throughput, such as video surveillance and disaster monitoring, where large image files must be transmitted over long distances in areas with limited communication infrastructure. In this paper, we introduce the LoRa Resource Allocation (LRA) algorithm, designed to address these limitations by enabling parallel transmissions, thereby reducing the total transmission time () and increasing the bit rate (BR).

View Article and Find Full Text PDF

According to South Korea's Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced.

View Article and Find Full Text PDF

Objective and continuous monitoring of Parkinson's disease (PD) tremor in free-living conditions could benefit both individual patient care and clinical trials, by overcoming the snapshot nature of clinical assessments. To enable robust detection of tremor in the context of limited amounts of labeled training data, we propose to use prototypical networks, which can embed domain expertise about the heterogeneous tremor and non-tremor sub-classes. We evaluated our approach using data from the Parkinson@Home Validation study, including 8 PD patients with tremor, 16 PD patients without tremor, and 24 age-matched controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!