Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bone marrow concentration (BMC) is the most recognized procedure to prepare mesenchymal stem cells for cartilage regeneration. However, bone marrow aspiration is highly invasive and results in low stem cell numbers. Recently, adipose tissue-derived stromal vascular fraction (AT-SVF) was studied as an alternate source of stem cells for cartilage regeneration. However, AT-SVF is not fully characterized in terms of functional equivalence to BMC. Therefore, in this study, we characterized AT-SVF and assessed its suitability as a one-step surgical procedure for cartilage regeneration, as an alternative to BMC. AT-SVF contained approximately sixfold less nucleated cells than BMC. However, adherent cells in AT-SVF were fourfold greater than BMC. Additionally, the colony-forming unit frequency of AT-SVF was higher than that of BMC, at 0.5 and 0.01%, respectively. The mesenchymal stem cell (MSC) population (CD45-CD31-CD90+CD105+) was 4.28% in AT-SVF and 0.42% in BMC, and the adipose-derived stromal cell (ASC) population (CD34+CD31-CD146-) was 32% in AT-SVF and 0.16% in BMC. In vitro chondrogenesis demonstrated that micromass was not formed in BMC, whereas it was clearly formed in AT-SVF. Taken together, uncultured AT-SVF could be used in one-step surgery for cartilage regeneration as a substitute for BMC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-014-9814-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!