The kinetics of aggregation of two pyromellitamide gelators, tetrabutyl- (C4) and tetrahexyl-pyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to 6 days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 h) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4, indicating one-dimensional stacking and aggregation corresponding to a multifiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggest that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multifiber braided cluster that has a diameter of about 62 Å. Over a longer period of time, the radius, persistence length, and contour length all continue to increase in 6 days after cooling. These data suggest that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g., tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la502546n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!