Near-infrared to ultraviolet multiphoton upconversion photoluminescence in ultrasmall Tm3+/Yb3+-codoped CaF2 nanocrystals (∼6.7  nm in size) was observed and further significantly enhanced by growing an active shell of NaYF4:Yb3+. Owing to the active shell, the lanthanide emitters inside the core are effectively prevented from the surface quenchers, and the excitation energy is absorbed more efficiently via the additional luminescence sensitizer Yb embedded in the shell. The details of underlying physics were investigated and discussed. The results present a good ultrasmall luminescent material system for achieving efficient multiphoton upconversion, which shows great potential in versatile industrial and biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.39.006265DOI Listing

Publication Analysis

Top Keywords

upconversion photoluminescence
8
photoluminescence ultrasmall
8
multiphoton upconversion
8
active shell
8
improved multiphoton
4
multiphoton ultraviolet
4
ultraviolet upconversion
4
ultrasmall core-shell
4
core-shell nanocrystals
4
nanocrystals near-infrared
4

Similar Publications

Li-Based Nanoprobes with Boosted Photoluminescence for Temperature Visualization in NIR Imaging-Guided Drug Release.

Nano Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.

View Article and Find Full Text PDF

Ultrathin BIC Metasurfaces Based on Ultra-Low-Loss SbSe Phase-Change Material.

Nano Lett

January 2025

School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.

Ultrathin and low-loss phase-change materials (PCMs) are highly valued for their fast and effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs mostly suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultra-low-loss PCM SbSe.

View Article and Find Full Text PDF

Donor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad () consisting of the acceptor perylene () linked to the donor (4--carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical ().

View Article and Find Full Text PDF

Hybrid metal-semiconductor nanostructures unifying plasmonic and high-refractive-index materials in a single resonant system demonstrate a wide set of unique optical properties. Such systems are a perspective for a broad palette of applications, but the link between their inner structure and optical properties is a very sensitive issue, which is still not revealed. Here, we describe the influence of internal microstructure of a hybrid gold-silicon nanoparticle (the gold nanoparticle with embedded silicon nanograins) on the up-conversion white-light photoluminescence.

View Article and Find Full Text PDF

The performance optimization of photoluminescent (PL) materials is a hot topic in the field of applied materials research. There are many different crystal defects in photoluminescent materials, which can have a significant impact on their optical properties. The luminescent properties and chemical stability of materials can be effectively improved by adjusting lattice defects in crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!