Einstein-Podolsky-Rosen paradox in twin images.

Phys Rev Lett

Département d'Optique, Institut FEMTO-ST, Université de Franche-Comté, CNRS, 25000 Besançon, France.

Published: October 2014

Spatially entangled twin photons provide both promising resources for modern quantum information protocols, because of the high dimensionality of transverse entanglement, and a test of the Einstein-Podolsky-Rosen paradox in its original form of position versus impulsion. Usually, photons in temporal coincidence are selected and their positions recorded, resulting in a priori assumptions on their spatiotemporal behavior. In this Letter, we record, on two separate electron-multiplying charge coupled devices cameras, twin images of the entire flux of spontaneous down-conversion. This ensures a strict equivalence between the subsystems corresponding to the detection of either position (image or near-field plane) or momentum (Fourier or far-field plane). We report the highest degree of paradox ever reported and show that this degree corresponds to the number of independent degrees of freedom, or resolution cells, of the images.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.160401DOI Listing

Publication Analysis

Top Keywords

einstein-podolsky-rosen paradox
8
twin images
8
paradox twin
4
images spatially
4
spatially entangled
4
entangled twin
4
twin photons
4
photons provide
4
provide promising
4
promising resources
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!