We previous found the expression level of PTEN was low in the chronic lymphocytic leukemia (CLL) patients. To assess the pathogenic contribution of the low expression of PTEN, we determined PTEN-regulating miRNA interference, PTEN promoter methylation and PTEN gene mutation condition in CLL. One hundred and fifty-four previously untreated CLL patients and 200 cases of healthy controls were sequenced in exons 5-9 of PTEN. None of single nucleotide polymorphism site or mutation was detected in the coding sequences of those exons. Methylation of PTEN promoter was found in one (1.33%) of the 75 patients with CLL, but none of the 25 age-matched control subjects. We found that PTEN was a potential target of miR-26a and miR-214, which had been confirmed following dual-luciferase reporter assays, reverse transcription polymerase chain reaction and Western blotting. High expression of miR-26a was associated with advanced Binet stage (P=0.012), p53 aberrations (P=0.014) and inferior time to first treatment (P=0.038), and high expression of miR-214 was only associated with p53 aberrations (P=0.041). Inhibition of miR-26a or miR-214 could induce more apoptosis in primary cultured CLL cells. These findings support miR-26a and miR-214 down-regulate expression of PTEN in CLL, but not PTEN mutation or promoter methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359232PMC
http://dx.doi.org/10.18632/oncotarget.2626DOI Listing

Publication Analysis

Top Keywords

mir-26a mir-214
16
expression pten
12
promoter methylation
12
pten
11
mir-214 down-regulate
8
down-regulate expression
8
pten gene
8
chronic lymphocytic
8
lymphocytic leukemia
8
pten mutation
8

Similar Publications

Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs).

View Article and Find Full Text PDF

Due to the lack of high-quality Sika Deer () transcriptome and sRNAome across multiple organs or development stages, it is impossible to comprehensively analyze the mRNA and miRNA regulatory networks related to growth, development and immunity response. In this study, we used single molecule-real time sequencing (SMRT-seq) and Illumina sequencing methods to generate transcriptome and sRNAome from ten tissues and four age groups of Sika Deer to help us understand molecular characteristics and global miRNA expression profiles. The results showed that a total of 240,846 consensus transcripts were generated with an average length of 2,784 bp.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer, with the incidence and mortality rates increasing every year. Despite the improvement of clinical management, substantial challenges remain due to its high recurrence rates and short survival period. This study aimed to identify potential diagnostic and prognostic biomarkers in HCC through bioinformatic analysis.

View Article and Find Full Text PDF

It is known that miRNAs are effective in immune response in the diagnosis and treatment of many infectious diseases. However, the miRNAs profile is unknown in Alveolar and Cystic Echinococcosis which can be fatal if left untreated. The miRNAs profile that activates the T and B cells forming the immune system in Alveolar and Cystic Echinococcosis patients was investigated in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!