A three-dimensional (3D), luminescent, 5-fold interpenetrating metal-organic framework (MOF), [Zn2(fdc)2(bpee)2(H2O)]n·2H2O (1) exhibiting highly selective sensing of nitrobenzene (NB) via a fluorescence quenching mechanism has been demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt02841d | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Luminescent chiral metal-organic frameworks (CMOFs) are promising candidates for the enantioselective sensing of important chiral molecules. Herein, we report the synthesis and characterization of Zn and Cd CMOFs based on 1,1'-bi-2-naphthol (BINOL)-derived 3,3',6,6'-tetra(benzoic acids), H-OEt and H-OH. Four CMOFs, -OEt, -OH, -OEt, and -OH, based on these ligands were crystallographically characterized.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China. Electronic address:
Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.
View Article and Find Full Text PDFChemistry
January 2025
National Chi Nan University, Department of Applied Chemistry, TAIWAN.
Three fluorescent Zn coordaintion polymers (CPs) have been synthesized from the reactions of Zn(NO3)2∙6H2O, benzene-1,4-dicarboxylic acid (1,4-H2bdc), and angular carbazole-derived bispyridyl ligands (Cz-3,6-bpy or Cz-Pr-3,6-bpy). CPs 1-3 all adopt similar two-dimensional (2D) ring-and-rod layer structures, described as topologically 4-connected 2∙65 nets where the Zn(II) centers act as 4-connected nodes. CPs 1 and 2 are a pair of solvent-mediated supramolecular isomers where the former shows a two-fold interlocked 2D → 2D polyrotaxane-like entangled net and the latter reveals a four-fold interpenetrated 2D → 3D polyrotaxane entanglement.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.
View Article and Find Full Text PDFChem Sci
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University 5268 Renmin Street Changchun 130024 P. R. China
Two-dimensional conductive metal-organic frameworks (2D c-MOFs) with high electrical conductivity and tunable structures hold significant promise for applications in metal-ion batteries. However, the construction of 3D interpenetrated c-MOFs for applications in metal-ion batteries is rarely reported. Herein, a 3D four-fold interpenetrated c-MOF (Cu-DBC) constructed by conjugated and contorted dibenzo[,]chrysene-2,3,6,7,10,11,14,15-octaol (DBC) ligands is explored as an advanced cathode material for sodium-ion batteries (SIBs) for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!