Layer-by-layer (LbL) films containing cationic polyelectrolytes and anionic bioactive molecules such as DNA are promising biomaterials for controlled and localized gene delivery for a number of biomedical applications including cancer DNA vaccine delivery. Bioreducible LbL films made of disulfide-containing poly(amido amine)s (PAAs) and plasmid DNA can be degraded by redox-active membrane proteins through the thiol-disulfide exchange reaction to release DNA exclusively into the extracellular microenvironment adjacent to the film. In order to better understand the film degradation mechanism and nature of the released species, the bioreducible film degradation is studied by atomic force microscopy, fluorescence, and dynamic light scattering in solutions containing a reducing agent. The PAA/DNA LbL film undergoes fast bulk degradation with micrometer-sized pieces breaking off from the substrate. This bulk degradation behavior is arrested by periodic insertions of a nonbioreducible poly(ethylenimine) (PEI) layer. The LbL films containing PAA/DNA and PEI/DNA bilayers display sequential film disassembly and are capable of continuously releasing DNA nanoparticles over a prolonged time. Insertion of the PEI layer enables the bioreducible LbL films to transfect human embryonic kidney 293 cells. The data conclude that the PEI layer is effective as a barrier layer against interlayer diffusion during LbL film assembly and more importantly during film disassembly. Without the barrier layer, the high mobility of cleaved PAA fragments is responsible for bulk degradation of bioreducible LbL films, which may prevent their ultimate gene-delivery applications. This work establishes a direct link among film internal structure, disassembly mechanism, and transfection efficiency. It provides a simple method to design bioreducible LbL films for sequential and long-time DNA release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm5010433 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.
The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).
View Article and Find Full Text PDFFungal Genet Biol
December 2024
University of California, Santa Barbara, Department of Chemical Engineering, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, United States. Electronic address:
Anaerobic gut fungi of the phylum Neocallimastigomycota are microbes proficient in valorizing low-cost but difficult-to-breakdown lignocellulosic plant biomass. Characterization of different fungal life stages and how they contribute to biomass breakdown are critical for biotechnological applications, yet we lack foundational knowledge about the transcriptional, metabolic, and enzyme secretion behavior of different life stages of anaerobic gut fungi: zoospores, germlings, immature thalli, and mature zoosporangia. A Miracloth-based technique was developed to enrich cell pellets with zoospores - the free-swimming, flagellated, young life stage of anaerobic gut fungi.
View Article and Find Full Text PDFFront Chem
December 2024
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
Although the Diels-Alder reaction (DA) has garnered significant attention due to its numerous advantages, its long reaction time is a drawback. Herein, we investigated the effects of polarity difference on DA using Layer-by-Layer (LbL) films comprising polycationic polyallylamine hydrochloride and polyanionic poly (styrenesulfonic acid-co-furfuryl methacrylate) [poly (SS--FMA)] as the reaction environment. First, furan composition in poly (SS--FMA) was adjusted to be 19 mol% to achieve good water solubility and layer deposition.
View Article and Find Full Text PDFBiomacromolecules
January 2025
CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal.
Silk sericin (SS) has been widely discarded as a waste by the silk textile industry during the degumming process to obtain fibroin. However, in the past decade, an in-depth understanding of its properties and functions turned it into a high added-value biomaterial for biomedical applications. Herein, we report the molecular design and development of sustainable supramolecular multilayered nanobiomaterials encompassing SS and oppositely charged chitosan (CHT) through a combination of self-assembly and electrostatically driven layer-by-layer (LbL) assembly technology.
View Article and Find Full Text PDFNat Commun
November 2024
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Cobalt is an efficient catalyst for Fischer-Tropsch synthesis (FTS) of hydrocarbons from syngas (CO + H) with enhanced selectivity for long-chain hydrocarbons when promoted by Manganese. However, the molecular scale origin of the enhancement remains unclear. Here we present an experimental and theoretical study using model catalysts consisting of crystalline CoMnO nanoparticles and thin films, where Co and Mn are mixed at the sub-nm scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!