The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216080 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111518 | PLOS |
J Genet Genomics
December 2024
State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.
View Article and Find Full Text PDFBiol Direct
December 2024
Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation.
View Article and Find Full Text PDFToxicology
December 2024
Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) have been regarded as important environmental carcinogens that can cause lung cancer. However, the underlying epigenetic mechanism during PAHs-induced lung carcinogenesis has remained largely unknown. Previously, we screened some novel epigenetic regulatory genes during 3-methylcholanthrene (3-MCA)-induced lung carcinogenesis, including the potassium inwardly rectifying channel subfamily J member 15 (KCNJ15) gene.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel.
The P-glycoprotein efflux pump, encoded by the MDR1 gene, is an ATP-driven transporter capable of expelling a diverse array of compounds from cells. Overexpression of this protein is implicated in the multi-drug resistant phenotype observed in various cancers. Numerous studies have attempted to decipher the impact of genetic variants within MDR1 on P-glycoprotein expression, functional activity, and clinical outcomes in cancer patients.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.
For the vast majority of genes in sequenced genomes, there is limited understanding of how they are regulated. Without such knowledge, it is not possible to perform a quantitative theory-experiment dialogue on how such genes give rise to physiological and evolutionary adaptation. One category of high-throughput experiments used to understand the sequence-phenotype relationship of the transcriptome is massively parallel reporter assays (MPRAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!