Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential.

Biomed Opt Express

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA ; Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA.

Published: October 2014

Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206301PMC
http://dx.doi.org/10.1364/BOE.5.003280DOI Listing

Publication Analysis

Top Keywords

receptor binding
12
binding potential
8
pixel-based absorption
4
absorption correction
4
correction dual-tracer
4
dual-tracer fluorescence
4
fluorescence imaging
4
imaging receptor
4
potential ratiometric
4
ratiometric approaches
4

Similar Publications

Bacteriocins, a class of molecules produced by bacteria, exhibit potent antimicrobial properties, including antiviral activities. The urgent need for treatments against SARS-CoV-2 has proposed bacteriocins such as enterocin DD14 (EntDD14) as potential therapeutic agents. However, the mechanism of macromolecular interaction of EntDD14 for the inhibition of SARS-CoV-2 is not yet fully understood, and its efficacy against variants like JN.

View Article and Find Full Text PDF

Background: Patients with autoimmune rheumatic diseases (ARD) are at increased risk of infection due to their impaired immune response, which also reduces vaccination efficacy. Although several studies have evaluated the serological response to SARS-CoV-2 mRNA-based vaccines in patients with ARD, limited information on immune responses to other vaccination platforms is available.

Aims: This observational prospective study aims to investigate the humoral immune response to different SARS-CoV-2 vaccines in patients with ARD.

View Article and Find Full Text PDF

Background: It has been demonstrated that COVID-19 vaccines confer significant protection, but temporal decay in the vaccine-induced antibodies has been reported; therefore, a third booster dose was considered. Human leukocyte antigen (HLA) class II molecules act as antigen presenting structures, play critical roles in the formation of an efficient antibody response. The current study aimed to evaluate the anti-receptor binding domain (RBD) antibody response after the booster dose of SpikoGen® vaccine in individuals with a history of Sinopharm primary vaccination series and its association with HLA-DQB1 and -DRB alleles.

View Article and Find Full Text PDF

Structure-based design of new anticancer N3-Substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

Comput Biol Med

January 2025

Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt. Electronic address:

Epidermal growth factor receptor (EGFR) is amongst the earliest targeted kinases by small-molecule inhibitors for the management of EGFR-positive cancer types. While a few inhibitors are granted FDA approval for clinical use, discovery of new inhibitors is still of merit to enhance ligand-binding stability and subsequent enzyme inhibition. Thus, a structure-based design approach was adopted to devise a new series of twenty-nine N3-substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!