Microsatellites are often considered ideal markers to investigate ecological processes in animal populations. They are regularly used as genetic barcodes to identify species, individuals, and infer familial relationships. However, such applications are highly sensitive the number and diversity of microsatellite markers, which are also prone to error. Here, we propose a novel framework to assess the suitability of microsatellite datasets for parentage analysis and species discrimination in two closely related species of coral reef fish, Plectropomus leopardus and P. maculatus (Serranidae). Coral trout are important fisheries species throughout the Indo-Pacific region and have been shown to hybridize in parts of the Great Barrier Reef, Australia. We first describe the development of 25 microsatellite loci and their integration to three multiplex PCRs that co-amplify in both species. Using simulations, we demonstrate that the complete suite of markers provides appropriate power to discriminate between species, detect hybrid individuals, and resolve parent-offspring relationships in natural populations, with over 99.6% accuracy in parent-offspring assignments. The markers were also tested on seven additional species within the Plectropomus genus with polymorphism in 28-96% of loci. The multiplex PCRs developed here provide a reliable and cost-effective strategy to investigate evolutionary and ecological dynamics and will be broadly applicable in studies of wild populations and aquaculture brood stocks for these closely related fish species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201420PMC
http://dx.doi.org/10.1002/ece3.1002DOI Listing

Publication Analysis

Top Keywords

species
10
parentage analysis
8
analysis species
8
species discrimination
8
species coral
8
coral reef
8
reef fish
8
fish plectropomus
8
multiplex pcrs
8
validation microsatellite
4

Similar Publications

Point-of-care ultrasound in the diagnosis of hepatic gas gangrene.

J Ultrasound

January 2025

Argentinian Critical Care Ultrasonography Association (ASARUC), Buenos Aires, Argentina.

Hepatic gas gangrene (HGG) is a rare but life-threatening condition typically caused by anaerobic bacteria such as Clostridium perfringens, though Gram-negative bacteria like Escherichia coli and Klebsiella species have also been implicated. Traditionally diagnosed via computed tomography (CT), point-of-care ultrasound (POCUS) has emerged as a valuable tool in critical care settings for its non-invasive, bedside utility. We report the case of a 51-year-old female with choledochal syndrome secondary to cholangiocarcinoma who developed HGG following left extended hepatectomy and biliary reconstruction.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!