After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199279 | PMC |
http://dx.doi.org/10.3389/fnana.2014.00115 | DOI Listing |
J Craniofac Surg
January 2025
Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Reconstruction after the excision of a lower eyelid tumor should be focused on the restoration of both functionality and aesthetic appeal. Accurate identification and appropriate intervention are crucial for the favorable resolution of the condition. This technique used a nasolabial mucosal-myocutaneous propeller flap to reconstruct a huge full-thickness defection of right lower eyelid because of basal cell carcinoma.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Made-Young Plastic Surgery Clinic, Seoul, Korea.
Background: Thread lifting is a minimally invasive technique for addressing facial aging and skin laxity. Despite its popularity, it carries risks of complications ranging from minor bruising to severe structural injuries. Comprehensive understanding of these complications is vital for optimizing outcomes.
View Article and Find Full Text PDFHeliyon
December 2024
Institute of Chemical Technologies and Analytics CTA, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria.
Adhesion at the interface between dissimilar materials in the semiconductor industry is an important topic, but reliable quantitative methods for strongly adhesive or highly plastic layers are hardly available. This study aims to investigate the suitability of the cross-sectional nanoindentation (CSN) method for determination of the critical energy release rate of thin film stacks in the presence of a polyimide layer as a representative structure for such a case. For this purpose, the adhesion of a deliberately weakened Si/SiO interface in a Si/SiO/Al/SiN/polyimide stack is examined by systematic variation of the experimental parameters.
View Article and Find Full Text PDFiScience
December 2024
State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!