The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jmicro/dfu066 | DOI Listing |
Orthop Traumatol Surg Res
January 2025
Orthopaedic Department, Croix St Simon Hospital 125 rue d'Avron, 75020 Paris, France.
Introduction: Spinopelvic kinematics, reflected by the change in spinopelvic tilt (ΔSPT) from a standing position to a flexed seated position, has been associated with the risk of prosthetic impingement and hip dislocation. Some studies have suggested changes in spinopelvic mobility after total hip arthroplasty (THA), but none have explored changes in mobility in the first three months following THA using a direct anterior approach.
Hypothesis: Our hypothesis was that changes in spinopelvic mobility occur in the first 3 months postoperatively, leading to increased hip mobility and increased spinopelvic kinematic abnormalities.
Methods Mol Biol
January 2025
Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
Electron tomography can provide additional morphological information not easily obtained by conventional transmission electron microscopy of thin sections. It uses a goniometer stage in the electron microscope to tilt the specimen and collect a series of 2D images from different orientations, which are combined to provide a 3D volume tomogram and a colored reconstruction of the morphological feature(s) of interest. Here we describe the protocols for its use in visualizing changes in organelle morphology after depletion of the SNARE proteins VAMP7 and VAMP8 and to study VAMP7 localization on endolysosomes/lysosomes.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Ningxia University, Yinchuan, 750021, China.
Optimizing the installation parameters of photovoltaic panels in a photovoltaic array to reduce dust accumulation, thereby enhancing their power generation, is a crucial research topic in the construction of solar power stations in desert regions. Utilizing a series of wind tunnel experiments on a photovoltaic array comprising four equally sized panels, this study assessed how variations in tilt angle, mounting height, spacing, and incoming flow direction influence both the accumulation mass of dust and the particle size distribution in a photovoltaic array. The results indicate that the dust accumulation on the first panel exponential growth with increasing tilt angle, incoming flow angles, and height, while subsequent panels displayed a trend of initial increase followed by a decrease, with a maximum increasing ratio achieved at specific installation configurations, the difference of dust mass on each panel can even be several times.
View Article and Find Full Text PDFAnn Plast Surg
December 2024
Department of Orthopaedic Surgery, Duson Hospital, Ansan, Korea.
Background: Extra-articular but severely comminuted distal basal fractures of the proximal phalanx (PP) are rarely reported. Therefore, the aim of this study was to achieve proper union and desirable outcomes using low-profile locking plates/screws. We introduced our own surgical approach and reported the clinical/radiographic outcomes via retrospective case series.
View Article and Find Full Text PDFInt J Ophthalmol
December 2024
School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
Aim: To present a technique of transcapsular scleral fixation of the standard capsular tension ring (CTR) through equatorial capsulotomy and in-the-bag intraocular lens (IOL) implantation in subluxated lenses.
Methods: This retrospective consecutive case series included patients with subluxated lenses by more than 180 degrees who underwent lens extraction, transcapsular scleral fixation of the standard CTR through equatorial capsulotomy, in-the-bag IOL implantation and with at least 6mo follow-up. Preoperative and postoperative best corrected visual acuity (BCVA), intraocular pressure (IOP), complications, and postoperative IOL tilt and decentration were recorded.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!