Purpose: (111)In (typically as [(111)In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an (89)Zr PET tracer for cell labelling and compare it with [(111)In]oxinate3 single photon emission computed tomography (SPECT).
Methods: [(89)Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [(89)Zr]oxinate4 or [(111)In]oxinate3 was monitored for up to 14 days. (89)Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting.
Results: Zr labelling was effective in all cell types with yields comparable with (111)In labelling. Retention of (89)Zr in cells in vitro after 24 h was significantly better (range 71 to >90%) than (111)In (43-52%). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with (111)In or (89)Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for (111)In. In liver, spleen and bone marrow at least 92% of (89)Zr remained associated with eGFP-positive cells after 7 days in vivo.
Conclusion: [(89)Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315484 | PMC |
http://dx.doi.org/10.1007/s00259-014-2945-x | DOI Listing |
J Nanobiotechnology
December 2024
Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).
Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.
Sci Rep
December 2024
Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.
Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:
Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.
Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.
Eur J Nucl Med Mol Imaging
December 2024
Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.
Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.
Biosensors (Basel)
November 2024
Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!