Isobutanol is attracting attention as a potential biofuel because it has higher energy density and lower hygroscopicity than ethanol. To date, several effective methods for microbial production of isobutanol have been developed, but they require expensive reagents to maintain expression plasmids and induce expression, which is not suitable for practical production. Here, we describe a simple and efficient method for isobutanol production in Escherichia coli. It is noteworthy that no expression plasmids or inducers were used during the production. Instead, heterologous genes necessary for isobutanol production were all knocked into the genome, and the expression of those genes was induced by xylose, which is present in most biomass feedstocks. The constructed strain (mlcXT7-LAFC-AAKCD) contains Bacillus subtilis alsS, E. coli ilvCD, Lactococcus lactis adhA, and L. lactis kivd genes in its genome and efficiently produced isobutanol from glucose and xylose in flask batch cultures. Under conditions in which the temperature and pH of the medium and the aeration in the culture were all optimized, the final isobutanol concentration reached 8.4 g L(-1) after 48 h. Isobutanol was also produced using hydrolysate from Japanese cedar as the carbon source without supplemented glucose, xylose, or yeast extract. Under those conditions, isobutanol (3.7 g L(-1)) was produced in 96 h. Taken together, these results indicate that the developed strain is potentially useful for industrial isobutanol production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-6173-x | DOI Listing |
Sci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China. Electronic address:
As a well-commercialized and utilized non-Saccharomyces yeast, Torulaspora delbruineckii is gaining increasing relevance in the winemaking industry. However, its ability to produce distinctive aromas in wine has been inconsistently reported in the literature. This study aimed to evaluate the fermentation performance and aroma properties of T.
View Article and Find Full Text PDFFood Res Int
December 2024
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:
Huangjiu, a traditional Chinese alcoholic beverage with a history spanning thousands of years, holds significant cultural and economic value in China. Despite its importance, the complexity of Huangjiu fermentation and the intricate interactions within its microbial community remain underexplored. This study addresses this gap by identifying the core volatile organic compounds (VOCs) and key microorganisms that define the flavor profile of Huangjiu.
View Article and Find Full Text PDFSci Rep
November 2024
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Chemical process intensification has attracted extensive interest of scholars. Distillation, as a high energy consumption industry, is in urgent need of energy saving and CO emissions reduction by means of process intensification. In this paper, isobutanol and p-xylene azeotrope was separated by pressure swing distillation (PSD).
View Article and Find Full Text PDFToxics
October 2024
Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!