Differential increases of specific FMR1 mRNA isoforms in premutation carriers.

J Med Genet

Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California, USA MIND Institute, University of California Davis Medical Center, Sacramento, California, USA.

Published: January 2015

AI Article Synopsis

  • Over 40% of male and ~16% of female carriers of the FMR1 premutation allele may develop neurodegenerative disorders, with RNA toxicity from increased mRNA levels being a leading factor in these conditions.
  • A long-read sequencing method identified 16 isoforms of FMR1 mRNA, with a significant increase in isoforms Iso10 and Iso10b in premutation carriers.
  • These findings point to the potential for relative increases in FMR1 mRNA isoforms contributing to the pathology associated with fragile X-related disorders.

Article Abstract

Background: Over 40% of male and ∼16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology.

Methods: To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR.

Results: Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17.

Conclusions: These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394606PMC
http://dx.doi.org/10.1136/jmedgenet-2014-102593DOI Listing

Publication Analysis

Top Keywords

mrna isoforms
16
premutation carriers
16
fmr1 mrna
12
mrna
8
isoforms
8
premutation
8
female carriers
8
rna toxicity
8
mrna levels
8
smrt sequencing
8

Similar Publications

Supervised analysis of alternative polyadenylation from single-cell and spatial transcriptomics data with spvAPA.

Brief Bioinform

November 2024

Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China.

Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities.

View Article and Find Full Text PDF

Differentially expressed messenger RNA isoforms in beef cattle skeletal muscle with different fatty acid profiles.

Meat Sci

January 2025

São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil. Electronic address:

This study aimed to identify mRNA isoforms that were expressed differently in the muscle tissue of Nellore cattle based on their intramuscular fatty acid profile. Forty-eight young bulls were used to quantify beef fatty acids (FA) and perform RNA sequencing analysis. The young bulls were divided into three different groups based on quantifying FA using k-means analysis.

View Article and Find Full Text PDF

Group V Chitin Deacetylases Are Responsible for the Structure and Barrier Function of the Gut Peritrophic Matrix in the Chinese Oak Silkworm .

Int J Mol Sci

December 2024

Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.

Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.

View Article and Find Full Text PDF

Background: Identification of global transcriptional events is crucial for genome annotation, as accurate annotation enhances the efficiency and comparability of genomic information across species. However, the annotation of transcripts in the cucumber genome remains to be improved, and many transcriptional events have not been well studied.

Results: We collected 1,904 high-quality public cucumber transcriptome samples from the National Center for Biotechnology Information (NCBI) to identify and annotate transcript isoforms in the cucumber genome.

View Article and Find Full Text PDF

Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA () to facilitate polyploidization, maturation, and functional competence of hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!