Despite the popularity of a simultaneous application of dermal matrices and split-thickness skin grafts, scarce evidence exists about the process of revascularization involved. In this study, we aimed at analyzing the progression of revascularization by high-resolution episcopic microscopy (HREM) in a porcine excisional wound model. Following the surgical procedure creating 5 × 5 cm(2) full-thickness defects on the back, one area was covered with an autologous split-thickness skin graft alone (control group), the other with a collagen-elastin dermal matrix plus split-thickness skin graft (dermal matrix group). Two skin biopsies per each group and location were performed on day 5, 10, 15, and 28 postoperatively and separately processed for H&E as well as HREM. The dermal layer was thicker in the dermal matrix group vs. control on day 5 and 28. No differences were found for revascularization by conventional histology. In HREM, the dermal matrix did not appear to decelerate the revascularization process. The presence of the dermal matrix could be distinguished until day 15. By day 28, the structure of the dermal matrix could no longer be delineated and was replaced by autologous tissue. As assessed by conventional histology and confirmed by HREM, the revascularization process was comparable in both groups, notably with regard to the vertical ingrowth of sprouting vessels. The presented technique of HREM is a valuable addition for analyzing small vessel sprouting in dermal matrices in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12233DOI Listing

Publication Analysis

Top Keywords

dermal matrix
28
split-thickness skin
16
skin graft
12
dermal
9
autologous split-thickness
8
wound model
8
dermal matrices
8
matrix group
8
hrem dermal
8
conventional histology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!