Objective: To evaluate the expression of antibodies against calretinin, cytokeratin 5/6, desmin, D2-40, HBME-1, mesothelin, thrombomodulin, WT1, Ber-EP4, CEA, EMA and MOC-31 individually and to compare it with a new rapid procedure for fluorescence immunocytochemistry (ICC) using liquid-based cytology (LBC).
Study Design: Sixty-four peritoneal cell specimens prepared with the LBC method were stained with these markers to evaluate their usefulness and develop a rapid fluorescence immunostaining method using Ber-EP4 that is applicable to intraoperative cancer cytodiagnosis.
Results: The adenocarcinoma markers were positive in 92% of adenocarcinoma cases, 57% of cases with suspicion of adenocarcinoma, and 5% of negative cases (reactive mesothelial cells). On the other hand, the mesothelial cell markers were positive in 8-15% of adenocarcinoma cases, 43-57% of cases with suspicion of adenocarcinoma, and 93-95% of negative cases. The rapid new fluorescence ICC procedure clearly stained only the adenocarcinoma cells within 20 min.
Conclusion: Immunocytochemical examination with the LBC method is a powerful ancillary technique for discriminating adenocarcinoma cells from mesothelial cells. This rapid new fluorescence ICC procedure can be used as an ancillary technique for accurate detection of adenocarcinoma cells in the intraoperative cytological examination of peritoneal or pleural washing fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000367706 | DOI Listing |
Mikrochim Acta
January 2025
Department of Chemistry and Material Engineering, Lyuliang University, Lyuliang, 033000, P. R. China.
Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.
View Article and Find Full Text PDFCells
December 2024
Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH, University Hospital Aachen, D-52074 Aachen, Germany.
The Rat-1 cell line was established as a subclone of the parental rat fibroblastoid line F2408, derived from Fisher 344 rat embryos. Rat-1 cells are widely used in various research fields, especially in cancer biology, to study the effects of oncogenes on cell proliferation. They are also crucial for investigating signal transduction pathways and play a key role in drug testing and pharmacological studies due to their rapid proliferation.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs.
View Article and Find Full Text PDFLuminescence
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!