miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development.

Nat Commun

1] Division of Cardiovascular Medicine, Stanford University, Falk CVRB, 300 Pasteur Drive, Stanford, California 94305, USA [2] VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.

Published: October 2014

Identification and treatment of abdominal aortic aneurysm (AAA) remain among the most prominent challenges in vascular medicine. MicroRNAs (miRNAs) are crucial regulators of cardiovascular pathology and represent intriguing targets to limit AAA expansion. Here we show, by using two established murine models of AAA disease along with human aortic tissue and plasma analysis, that miR-24 is a key regulator of vascular inflammation and AAA pathology. In vivo and in vitro studies reveal chitinase 3-like 1 (Chi3l1) to be a major target and effector under the control of miR-24, regulating cytokine synthesis in macrophages as well as their survival, promoting aortic smooth muscle cell migration and cytokine production, and stimulating adhesion molecule expression in vascular endothelial cells. We further show that modulation of miR-24 alters AAA progression in animal models, and that miR-24 and CHI3L1 represent novel plasma biomarkers of AAA disease progression in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217126PMC
http://dx.doi.org/10.1038/ncomms6214DOI Listing

Publication Analysis

Top Keywords

vascular inflammation
8
aaa disease
8
aaa
6
mir-24
5
mir-24 limits
4
aortic
4
limits aortic
4
vascular
4
aortic vascular
4
inflammation murine
4

Similar Publications

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Chronic Venous Insufficiency (CVI) is a progressive vascular condition characterized by venous hypertension and chronic inflammation, leading to significant clinical and socioeconomic impacts. This study aimed to evaluate the efficacy and safety of emerging pharmacological interventions for CVI, focusing on clinical outcomes such as pain, edema, cutaneous blood flow, and quality of life. Eligible interventions comprised new vasoprotective drugs, such as hydroxyethylrutoside, Pycnogenol, aminaphthone, coumarin + troxerutin, and Venoruton, compared to the standard therapy of diosmin and hesperidin.

View Article and Find Full Text PDF

Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases.

Pharmaceuticals (Basel)

January 2025

Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.

View Article and Find Full Text PDF

: Chemotherapy (CMT) in children can disrupt dental development and calcification, causing long-term dental issues, but good dental care and habits can help improve quality of life. This case report examines permanent dental disturbances in a 7-year, 4-month-old girl undergoing CMT, explores the histology of microdontia, and outlines an oral treatment plan for CMT management. : Clinical examination revealed microdontia and a groove crossing the cervical area (chronological hypoplasia), which were assessed using panoramic radiographs and histological analysis.

View Article and Find Full Text PDF

Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!