Objectives: The aim of this animal study was to compare the effects of narrow, concave-straight and wide anatomic healing abutments on changes to soft tissues and crestal bone levels around implants immediately placed into extraction sockets in foxhound dogs.

Materials And Methods: Forty-eight titanium implants (Bredent Medical GMBH, Germany) of the same dimensions were placed in six foxhound dogs. They were divided into two groups (n = 24): test (implants with anatomic abutment) and control (implants with concave-straight abutment). The implants were inserted randomly in the post extraction sockets of P2 , P3 , P4, and M1 bilaterally in six dogs. After eight and twelve weeks, the animals were sacrificed and samples extracted containing the implants and the surrounding soft and hard tissues. Soft tissue and crestal bone loss (CBL) were evaluated by histology and histomorphometry.

Results: All implants were clinically and histologically osseointegrated. Healing patterns were examined microscopically at eight and twelve weeks. After eight and twelve weeks, for hard tissues, the distance from the implant shoulder to the first bone-to-implant contact (IS-C) was higher for control group in the lingual aspect with statistical significance (P < 0.05). For soft tissues (STL), the distance from the top of the peri-implant mucosa to the apical portion of the junction epithelium (PM-Je) was significantly less on the lingual aspect in the test group (with wider abutment) at eight and twelve weeks (P < 0.05). The distance from the top of the apical portion of the junction epithelium to the first bone-to-implant contact (Je-C) was significantly higher in the test group (wider abutment) in the lingual aspect at eight and twelve weeks (P < 0.05). There was no connective tissue contact with any abutment surface.

Conclusions: Within the limitations of this animal study, anatomic healing abutments protect soft and hard tissues and reduce crestal bone resorption compared with concave-straight healing abutments.

Download full-text PDF

Source
http://dx.doi.org/10.1111/clr.12516DOI Listing

Publication Analysis

Top Keywords

extraction sockets
12
twelve weeks
12
healing abutments
8
soft tissues
8
foxhound dogs
8
crestal bone
8
hard tissues
8
implants
7
effects healing
4
abutments size
4

Similar Publications

The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.

View Article and Find Full Text PDF

, commonly known as absinthe, is a perennial plant with distinctive broad ovate pointed leaves of a silvery-gray color, reaching a height of 1.5 m. The utilization of this herb as a source of natural compounds and as the primary ingredient in the alcoholic beverage absinthe has recently seen a resurgence following a period of prohibition.

View Article and Find Full Text PDF

After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.

View Article and Find Full Text PDF
Article Synopsis
  • Tooth extraction often leads to bone loss in the jaw, complicating future dental treatments and aesthetics.
  • Purple leaves contain beneficial compounds that may improve bone health, while hydroxyapatite is a biocompatible substance that helps bone growth.
  • Combining purple leaf extract with hydroxyapatite significantly boosts key bone-related markers and calcium deposition over time in stem cell studies.
View Article and Find Full Text PDF

Electroactive membranes enhance in-situ alveolar ridge preservation via spatiotemporal electrical modulation of cell motility.

Biomaterials

December 2024

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. Electronic address:

Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!