We identified three new azaspiracids (AZAs) with molecular weights of 715, 815, and 829 (AZA33 (3), AZA34 (4), and AZA35, respectively) in mussels, seawater, and Azadinium spinosum culture. Approximately 700 μg of 3 and 250 μg of 4 were isolated from a bulk culture of A. spinosum, and their structures determined by MS and NMR spectroscopy. These compounds differ significantly at the carboxyl end of the molecule from known AZA analogues and therefore provide valuable information on structure-activity relationships. Initial toxicological assessment was performed using an in vitro model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 was detected at low levels, whereas 4 and AZA35 were detected only at extremely low levels or not at all. The structures of 3 and 4 are consistent with AZAs being biosynthetically assembled from the amino end.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np500555kDOI Listing

Publication Analysis

Top Keywords

azadinium spinosum
8
low levels
8
isolation structure
4
structure elucidation
4
elucidation relative
4
relative lc-ms
4
lc-ms response
4
response vitro
4
vitro toxicity
4
toxicity azaspiracids
4

Similar Publications

Metabarcoding revealed a high diversity of Amphidomataceae (Dinophyceae) and the seasonal distribution of their toxigenic species in the Taiwan Strait.

Harmful Algae

May 2023

Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR. China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR. China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR. China. Electronic address:

The dinophyte family Amphidomataceae includes the genera Azadinium and Amphidoma. Four of these species are known to produce azaspiracids, which are lipophilic phycotoxins accumulating in shellfish. The diversity and biogeography of Amphidomataceae is far from yet resolved.

View Article and Find Full Text PDF

Co-localisation of Azaspiracid Analogs with the Dinoflagellate Species Azadinium spinosum and Amphidoma languida in the Southwest of Ireland.

Microb Ecol

April 2022

School of Science, Department of Environmental Science, Innovation and Sustainability, Institute of Technology Sligo, Centre for Environmental Research, Ash Lane, Sligo, F91 YW50, Ireland.

Phytoplankton and biotoxin monitoring programmes have been implemented in many countries to protect human health and to mitigate the impacts of harmful algal blooms (HABs) on the aquaculture industry. Several amphidomatacean species have been confirmed in Irish coastal waters, including the azaspiracid-producing species Azadinium spinosum and Amphidoma languida. Biogeographic distribution studies have been hampered by the fact that these small, armoured dinoflagellates share remarkably similar morphologies when observed by light microscopy.

View Article and Find Full Text PDF

Information on the diversity and distribution of harmful microalgae in the Gulf of Thailand is very limited and mainly based on microscopic observations. Here, we collected 44 water samples from the Gulf of Thailand and its adjacent water (Perhentian Island, Malaysia) for comparison in 2018. DNA metabarcoding was performed targeting the partial large subunit ribosomal RNA gene (LSU rDNA D1-D3) and the internal transcribed spacers (ITS1 and ITS2).

View Article and Find Full Text PDF

Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates and (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers and .

View Article and Find Full Text PDF

Temporal and spatial distribution of Azadinium species in the inland and coastal waters of the Pacific northwest in 2014-2018.

Harmful Algae

September 2020

Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.

Azaspiracids, produced by some species of the dinoflagellate genera Azadinium and Amphidoma, can cause a syndrome in humans called azaspiracid shellfish poisoning (AZP). In 1995, mussels from the Irish west coast contaminated with azaspiracids were, for the first time, linked to this human illness that has symptoms of nausea, vomiting, severe diarrhea, and stomach cramps. The only confirmed cases of AZP to date in the United States occurred in Washington State in 2008 from mussels imported from Ireland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!