Cockayne syndrome (CS) is a rare autosomal recessive genetic disease characterized by growth failure and progressive neurological degeneration. Here we report a mild form of CS patient who was homozygous for the C526T transition resulting in a new nonsense mutation, which converts Arg176 to a stop codon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184625PMC
http://dx.doi.org/10.1002/ccr3.47DOI Listing

Publication Analysis

Top Keywords

cockayne syndrome
8
mutation csb
4
csb gene
4
gene chinese
4
chinese patient
4
patient mild
4
mild cockayne
4
syndrome cockayne
4
syndrome rare
4
rare autosomal
4

Similar Publications

Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence.

View Article and Find Full Text PDF

Syndromic Retinitis Pigmentosa.

Prog Retin Eye Res

December 2024

Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives.

View Article and Find Full Text PDF

The Hashimoto Research Group for Comprehensive Research of Gene Mutation-related Rare and Intractable Diseases of the Skin is a contributor to the Project for Research on Intractable Diseases of the Ministry of Health, Labor, and Welfare (MHLW) of Japan. Our research group performs clinical research on 23 rare intractable genetic skin diseases that are classified into eight disease groups. Among the 23 diseases, 17 are mainly studied by our research group, and 6 diseases are studied in collaboration with other research groups.

View Article and Find Full Text PDF

Transcription-coupled repair - mechanisms of action, regulation, and associated human disorders.

FEBS Lett

December 2024

Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS.

View Article and Find Full Text PDF

Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!