Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.

Phys Chem Chem Phys

Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 117602, Singapore.

Published: December 2014

Cu2O and CuO are attractive photocatalytic materials for water splitting due to their earth abundance and low cost. In this paper, we report the deposition of Cu2O and CuO thin films by a sol-gel spin-coating process. Sol-gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control. Pure-phase Cu2O and CuO films were obtained by thermal annealing at 500 °C in nitrogen and ambient air, respectively. The films were successfully incorporated as photocathodes in a photoelectrochemical (PEC) cell, achieving photocurrents of -0.28 mA cm(-2) and -0.35 mA cm(-2) (for Cu2O and CuO, respectively) at 0.05 V vs. a reversible hydrogen electrode (RHE). The Cu2O photocurrent was enhanced to -0.47 mA cm(-2) upon incorporation of a thin layer of a NiOx co-catalyst. Preliminary stability studies indicate that CuO may be more stable than Cu2O as a photocathode for PEC water-splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp03241aDOI Listing

Publication Analysis

Top Keywords

cu2o cuo
20
cuo thin
8
thin films
8
water splitting
8
cu2o
7
cuo
6
sol-gel deposited
4
deposited cu2o
4
films
4
films photocatalytic
4

Similar Publications

This study optimizes the CuO/GaO heterojunction diodes (HJDs) by tailoring the structural parameters of CuO layers. The hole concentration in the sputtered CuO was precisely controlled by adjusting the Ar/O gas ratio. Experimental investigations and TCAD simulations were employed to systematically evaluate the impact of the CuO layer dimension and hole concentration on the electrical performance of HJDs.

View Article and Find Full Text PDF

Understanding the impact of surface copper valence states on the distribution of electrochemical carbon dioxide products is critical. Herein, CuO@Cu2O with a Cu2+/Cu+ interface was fabricated using wet chemical etching approach. The hollow shape offered a large region for gas adsorption, while the interfacial mixed chemical state of Cu2+/Cu+ with tunable control ratio raised the local density of CHO* and accelerated the carbon-carbon coupling reaction.

View Article and Find Full Text PDF

Cuprous oxide (CuO) thin films were chemically deposited from a solution onto GaAs(100) and (111) substrates using a simple three-component solution at near-ambient temperatures (10-60 °C). Interestingly, a similar deposition onto various other substrates including Si(100), Si(111), glass, fluorine-doped tin oxide, InP, and quartz resulted in no film formation. Films deposited on both GaAs(100) and (111) were found alongside substantial etching of the substrates.

View Article and Find Full Text PDF

Copper nanoparticles (NPs) can be coupled with cuprous oxide, combining photoelectrocatalytic properties with a broad-range optical absorption. In the present study, we aimed to correlate changes in morphology, electronic structure and plasmonic properties of Cu NPs at different stages of oxidation. We demonstrated the ability to monitor the oxidation of NPs at the nanometric level using STEM-EELS spectral maps, which were analyzed with machine learning algorithms.

View Article and Find Full Text PDF

Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!