Aim: Myocardial fibrosis is fundamental in the pathogenesis of heart failure. Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is commonly assumed to represent myocardial fibrosis; however, comparative human histological data are limited, especially in non-ischaemic cardiac disease. Diffuse interstitial myocardial fibrosis is increasingly recognized as central in the pathogenesis of cardiomyopathy and can be quantified using newer CMR techniques such as T1 mapping. We evaluated the relationship of CMR assessment of regional and diffuse fibrosis with human histology.
Methods And Results: Eleven patients on the waiting list for heart transplantation (43.5 ± 7.6 years, 64% male) and eight patients undergoing surgical myectomy for obstructive hypertrophic cardiomyopathy (57.1 ± 8.6 years, 63% male) were recruited and underwent CMR prior to cardiac transplantation or myectomy. Quantification of fibrosis in explanted hearts using digitally analysed Masson-trichrome-stained slides was validated against picrosirius red-stained slides analysed using Image J, with an excellent correlation (R = 0.95, P < 0.0001). Significant correlations were observed between LGE and histological fibrosis across a range of signal intensity thresholds in the explanted hearts (range: 2-10 standard deviations above reference myocardium), with maximal accuracy at a threshold of 6 SD (R = 0.91, P < 0.001). Assessment of interstitial myocardial fibrosis with post-contrast T1 times demonstrated a significant correlation on both segmental (R = -0.64, P = 0.002) and per-patient (R = -0.78, P = 0.003) analyses.
Conclusion: CMR provides accurate, non-invasive assessment of regional myocardial fibrosis using LGE, while diffuse interstitial myocardial fibrosis is accurately assessed with post-contrast T1 mapping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ehjci/jeu182 | DOI Listing |
Cell Death Dis
December 2024
Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.
View Article and Find Full Text PDFBMC Cardiovasc Disord
December 2024
Jiangxi University of Chinese Medicine, Jiangxi, China.
Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.
Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.
Front Biosci (Landmark Ed)
December 2024
Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.
View Article and Find Full Text PDFWorld J Cardiol
December 2024
Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China.
Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!