Aim: Myocardial fibrosis is fundamental in the pathogenesis of heart failure. Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is commonly assumed to represent myocardial fibrosis; however, comparative human histological data are limited, especially in non-ischaemic cardiac disease. Diffuse interstitial myocardial fibrosis is increasingly recognized as central in the pathogenesis of cardiomyopathy and can be quantified using newer CMR techniques such as T1 mapping. We evaluated the relationship of CMR assessment of regional and diffuse fibrosis with human histology.

Methods And Results: Eleven patients on the waiting list for heart transplantation (43.5 ± 7.6 years, 64% male) and eight patients undergoing surgical myectomy for obstructive hypertrophic cardiomyopathy (57.1 ± 8.6 years, 63% male) were recruited and underwent CMR prior to cardiac transplantation or myectomy. Quantification of fibrosis in explanted hearts using digitally analysed Masson-trichrome-stained slides was validated against picrosirius red-stained slides analysed using Image J, with an excellent correlation (R = 0.95, P < 0.0001). Significant correlations were observed between LGE and histological fibrosis across a range of signal intensity thresholds in the explanted hearts (range: 2-10 standard deviations above reference myocardium), with maximal accuracy at a threshold of 6 SD (R = 0.91, P < 0.001). Assessment of interstitial myocardial fibrosis with post-contrast T1 times demonstrated a significant correlation on both segmental (R = -0.64, P = 0.002) and per-patient (R = -0.78, P = 0.003) analyses.

Conclusion: CMR provides accurate, non-invasive assessment of regional myocardial fibrosis using LGE, while diffuse interstitial myocardial fibrosis is accurately assessed with post-contrast T1 mapping.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ehjci/jeu182DOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
28
interstitial myocardial
16
diffuse interstitial
12
fibrosis
10
cardiac magnetic
8
magnetic resonance
8
regional diffuse
8
assessment regional
8
explanted hearts
8
myocardial
7

Similar Publications

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.

View Article and Find Full Text PDF

Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.

Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!