This study was conducted to determine the optimum extraction conditions for the effective separation and removal of Cu2+, Fe2+, and Fe3+ using N-benzoyl-n-phenylhydroxylamine (BPA) as an analytical reagent. An efficient liquid-liquid extraction method was developed for the separation and removal of Cu2+, Fe2+, and Fe3+ from environmental waste samples. In this method, BPA was used as a chelating agent and the effect of different parameters- including solvents, pH, stripping agents, extraction time, and the interference of other ions- on the quantitative removal of these metals was investigated. This study demonstrates that chloroform is the most effective solvent for BPA. The maximum extraction of the selected metallic species was found between pH 3 and 5. It was demonstrated that the maximum percentage recovery of the metals can be attained using 1 M HCl as a stripping agent. Optimized conditions of different parameters could be beneficial for industry and environmental laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2014.979250DOI Listing

Publication Analysis

Top Keywords

separation removal
12
removal cu2+
12
cu2+ fe2+
12
fe2+ fe3+
12
fe3+ environmental
8
environmental waste
8
waste samples
8
samples n-benzoyl-n-phenylhydroxylamine
4
n-benzoyl-n-phenylhydroxylamine study
4
study conducted
4

Similar Publications

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.

View Article and Find Full Text PDF

Background And Objectives: Telemedicine has become a mainstay of ALS clinical care, but there is currently no standardized approach for assessing and tracking changes to the neurologic examination in this format. The goal of this study was to create a standardized telemedicine-based motor examination scale to objectively and reliably track ALS progression and use Rasch methodology to validate the scale and improve its psychometric properties.

Methods: A draft telemedicine examination scale with 25 items assessing movement in the bulbar muscles, neck, trunk, and extremities was created by an ALS expert panel, incorporating input from patient advisors.

View Article and Find Full Text PDF

Background: Radiomics provides quantitative features of pulmonary nodules (PNs) which could aid lung cancer diagnosis, but medical image acquisition variability is an obstacle to clinical application. Acquisition effects may differ between radiomic features from benign vs. malignant PNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!