Three-dimensional analysis of Nafion layers in fuel cell electrodes.

Nat Commun

1] University Grenoble Alpes, Grenoble F-38000, France [2] CEA, LITEN, Grenoble F-38054, France [3] CNRS, SPrAM, Grenoble F-38054, France [4] CEA, INAC-SPrAM, Grenoble F-38054, France.

Published: October 2014

Proton exchange membrane fuel cell is one of the most promising zero-emission power sources for automotive or stationary applications. However, their cost and lifetime remain the two major key issues for a widespread commercialization. Consequently, much attention has been devoted to optimizing the membrane/electrode assembly that constitute the fuel cell core. The electrodes consist of carbon black supporting Pt nanoparticles and Nafion as the ionomer binder. Although the ionomer plays a crucial role as ionic conductor through the electrode, little is known about its distribution inside the electrode. Here we report the three-dimensional morphology of the Nafion thin layer surrounding the carbon particles, which is imaged using electron tomography. The analyses reveal that doubling the amount of Nafion in the electrode leads to a twofold increase in its degree of coverage of the carbon, while the thickness of the layer, around 7 nm, is unchanged.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6229DOI Listing

Publication Analysis

Top Keywords

fuel cell
12
three-dimensional analysis
4
nafion
4
analysis nafion
4
nafion layers
4
layers fuel
4
cell electrodes
4
electrodes proton
4
proton exchange
4
exchange membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!