Sulfhydryl-specific probe for monitoring protein redox sensitivity.

ACS Chem Biol

Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea 120-750.

Published: December 2014

Reactive oxygen species (ROS) regulate various biological processes by modifying reactive cysteine residues in the proteins participating in the relevant signaling pathways. Identification of ROS target proteins requires specific reagents that identify ROS-sensitive cysteine sulfhydryls that differ from the known alkylating agents, iodoacetamide and N-ethylmaleimide, which react nonspecifically with oxidized cysteines including sulfenic and sulfinic acid. We designed and synthesized a novel reagent, methyl-3-nitro-4-(piperidin-1-ylsulfonyl)benzoate (NPSB-1), that selectively and specifically reacts with the sulfhydryl of cysteines in model compounds. We validated the specificity of this reagent by allowing it to react with recombinant proteins followed by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry (MS/MS), and mutant studies employed it to identify cellular proteins containing redox-sensitive cysteine residues. We also obtained proteins from cells treated with various concentrations of hydrogen peroxide, labeled them with biotinylated NPSB-1 (NPSB-B), pulled them down with streptavidin beads, and identified them with MS/MS. We grouped these proteins into four families: (1) those having reactive cysteine residues easily oxidized by hydrogen peroxide, (2) those with cysteines reactive only under mild oxidative stress, (3) those with cysteines reactive only after exposure to oxidative stress, and (4) those with cysteines that are reactive regardless of oxidative stress. These results confirm that NPSBs can serve as novel chemical probes for specifically capturing reactive cysteine residues and as powerful tools for measuring their oxidative sensitivity and can help to understand the function of cysteine modifications in ROS-mediated signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cb500839jDOI Listing

Publication Analysis

Top Keywords

cysteine residues
16
reactive cysteine
12
cysteines reactive
12
oxidative stress
12
residues proteins
8
signaling pathways
8
hydrogen peroxide
8
stress cysteines
8
reactive
7
cysteine
6

Similar Publications

The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox initiators. Initial studies in chemical models required an oxygen-free environment for efficient coupling and showed very poor activation when using a redox initiator.

View Article and Find Full Text PDF

Mimicking the reactivity of drug metabolites: Biomolecule conjugation of an electrochemically-generated, reactive oxidation product of the antibiotic minocycline.

J Pharm Biomed Anal

January 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany. Electronic address:

Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry.

View Article and Find Full Text PDF

Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS.

FEBS J

January 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.

1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure.

View Article and Find Full Text PDF

Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation.

Proc Natl Acad Sci U S A

February 2025

Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.

The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.

View Article and Find Full Text PDF

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!