Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

Acad Med

Mr. O'Mara is a scholar in the MD-PhD Training Program, University of Florida College of Medicine, Gainesville, Florida, and in the Joint Degree Program in Demography and Social Policy, Office of Population Research and Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey. Dr. Hsu is chief executive officer, Prometheon Pharma, LLC, a resident company in the Sid Martin Biotechnology Incubator, University of Florida, Alachua, Florida; this article represents work undertaken while Dr. Hsu was director, MD-PhD Training Program, University of Florida College of Medicine, Gainesville, Florida. Dr. Wilson is vice president for health affairs and dean, University of Florida College of Medicine, Jacksonville, Florida.

Published: February 2015

The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310812PMC
http://dx.doi.org/10.1097/ACM.0000000000000540DOI Listing

Publication Analysis

Top Keywords

conventional biomedical
12
biomedical clinical
12
biomedical workforce
12
health equity
12
health
10
md-phd programs
8
md-phd training
8
training programs
8
clinical sciences
8
programs allow
8

Similar Publications

Background: Imprisonment has a major impact on a person's psychological well-being. The proportion of older imprisoned persons is dramatically increasing worldwide, and they are likely to have greater physical and mental health needs compared to younger persons in prisons. However, there is currently a lack of research on the psychological stressors and the coping strategies of older imprisoned persons.

View Article and Find Full Text PDF

Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.

Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.

View Article and Find Full Text PDF

Advances in IgY antibody dosage form design and delivery strategies: Current status and future perspective.

Int J Biol Macromol

January 2025

School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China; Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. Electronic address:

Immunoglobulin Y (IgY), a unique type of antibody found in birds, is attracting increasing attention for a broad range of biomedical applications. Rational IgY protection, dosage form design, and delivery are highly essential to transform functional IgY antibodies into desired IgY products for therapeutic and prophylactic administration. Although progress has been made in this field, it remains in the early stages, highlighting the fundamental research and development needed in this aspect of IgY technology.

View Article and Find Full Text PDF

Leveraging Epigenetic Alterations in Pancreatic Ductal Adenocarcinoma for Clinical Applications.

Semin Cancer Biol

January 2025

Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease.

View Article and Find Full Text PDF

Atrial fibrillation versus. atrial myopathy in thrombogenesis: Two sides of the same coin?

Trends Cardiovasc Med

January 2025

Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Medical University of Bialystok, Bialystok, Poland.

Atrial fibrillation (AF) and atrial myopathy are recognized contributors to cardiovascular morbidity, particularly ischemic stroke. AF poses an elevated risk of thrombogenesis due to irregular heart rhythm leading to blood stasis and clot formation. Atrial myopathy, marked by structural and functional alterations in the atria, is emerging as a crucial factor influencing thromboembolic events, independently of AF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!