Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization.

Phys Rev E Stat Nonlin Soft Matter Phys

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China and Department of Physics, Zhejiang University, Hangzhou 310027, China.

Published: May 2014

Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that in reaching the state of global synchronization the networks can stay in various states of partial synchronization. The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the important roles of the network topological symmetry on synchronization transition are identified. Moreover, for networks possessing multiple topological symmetries, it is found that the synchronization transition can be divided into different stages, with each stage characterized by a unique synchronous pattern of the oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are also investigated, where the partial synchronization states, although unstable, are found to be still playing important roles in the transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.89.052908DOI Listing

Publication Analysis

Top Keywords

synchronization transition
16
partial synchronization
16
synchronization
10
chaotic oscillators
8
oscillators investigated
8
synchronization states
8
transition networked
4
networked chaotic
4
oscillators
4
oscillators viewpoint
4

Similar Publications

Influence of Messa di Voce speed on vocal stability of untrained, healthy subjects.

PLoS One

January 2025

Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Munich University Hospital (LMU), Munich, Germany.

Introduction: Despite its importance in voice training, comprehensive research into sustained vowel phonation with constant pitch and increasing and decreasing loudness, the so-called Messa di Voce, is lacking. The study examines the laryngeal behavior during Messa di Voce, regarding the impact of the speed of execution on voice stability parameters.

Materials And Methods: Nine untrained, healthy subjects (5 female, 4 male) were asked to perform Messa di Voce exercises on the vowel [i:], involving a gradual increase and decrease of volume.

View Article and Find Full Text PDF

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Dynamic cycles between brain states during creative storytelling.

Neuroimage

January 2025

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China. Electronic address:

Many theories suggest that creative thinking involves a dynamic transition between different mental states, yet empirical evidence supporting this notion remains scarce. The dual process model proposes that spontaneous thinking and deliberate thinking drive the dwell in and the transitions between different mental states during creative thinking, but there is a debate over whether the two types of thinking operate in parallel or in sequence. To address these gaps, we conducted a functional magnetic resonance imaging (fMRI) study in 41 college students during a creative storytelling task.

View Article and Find Full Text PDF

The efficient acquisition and processing of large-scale terrain data has always been a focal point in the field of photogrammetry. Particularly in complex mountainous regions characterized by clouds, terrain, and airspace environments, the window for data collection is extremely limited. This paper investigates the use of airborne millimeter-wave InSAR systems for efficient terrain mapping under such challenging conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!