The effect of coherent single frequency injection on two-section semiconductor lasers is studied numerically using a model based on a set of delay differential equations. The existence of bistability between different continuous-wave and nonstationary regimes of operation is demonstrated in the case of sufficiently large linewidth enhancement factors.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.89.052903DOI Listing

Publication Analysis

Top Keywords

two-section semiconductor
8
bistability hysteresis
4
hysteresis optically
4
optically injected
4
injected two-section
4
semiconductor laser
4
laser coherent
4
coherent single
4
single frequency
4
frequency injection
4

Similar Publications

Tunable Characteristics of Optical Frequency Combs from InGaAs/GaAs Two-Section Mode-Locked Lasers.

Sensors (Basel)

December 2024

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 µm, which indicates a stable pulse shape, with the power-current(P-I) characteristic curve revealing a small difference between forward and reverse drive currents in the gain region.

View Article and Find Full Text PDF
Article Synopsis
  • Heterodyne detection using interband cascade lasers (ICL) has been widely applied but is often limited by the use of bulky hardware.
  • This study explores a compact integrated ICL platform that utilizes a two-section design: a short section for modulation and a long section as a semiconductor optical amplifier (SOA).
  • The integration includes a racetrack cavity to generate a single-mode reference, allowing for effective heterodyne detection by coupling the reference field into the SOA and observing the beating signal on the integrated detector.
View Article and Find Full Text PDF

A novel high-speed directly modulated two-section distributed-feedback (TS-DFB) semiconductor laser based on the detuned-loading effect is proposed and simulated. A grating structure is designed by the reconstruction-equivalent-chirp (REC) technique. A π phase shift is introduced into the reflection grating, which can provide a narrow-band reflection region with a sharp falling slope on both sides of the reflection spectrum, thus enhancing the detuned-loading effect.

View Article and Find Full Text PDF

A highly integrated multi-mode multi-band (MMMB) power amplifier module (PAM) using hybrid bulk complementary metal oxide semiconductor (CMOS), gallium arsenide (GaAs) heterojunction bipolar transistor (HBT), and silicon-on-insulator (SOI) technologies for low band (LB, 824-915 MHz) and high band (HB, 1710-1980 MHz) is proposed. The hybrid MMMB PAM integrates a bulk CMOS controller die, a GaAs HBT power amplifier (PA) die and a SOI switch die on a six-layer laminate. To simultaneously obtain both highly efficient and highly linear characteristics over a wide range of input power levels, a parallel dual-chain PA strategy has been adopted to provide vary bias current and gain for low-power mode (LPM) and high-power mode (HPM) operation.

View Article and Find Full Text PDF

Monolithic two-section InGaAs/GaAs double quantum well (DQW) passively mode-locked lasers (MLLs) with asymmetric waveguide, consisting of the layers of p-doped AlGaAs waveguide and no-doped InGaAsP waveguide, emitting at ~ 1.06 μm, with a fundamental repetition rate at ~ 19.56 GHz have been demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!