To apply spectroscopy as a diagnostic tool for dense plasmas, a theoretical approach to pressure broadening is indispensable. Here, a quantum-statistical theory is used to calculate spectral line shapes of few-electron atoms. Ionic perturbers are treated quasistatically as well as dynamically via a frequency fluctuation model. Electronic perturbers are treated in the impact approximation. Strong electron-emitter collisions are consistently taken into account with an effective two-particle T-matrix approach. Convergent close-coupling calculations give scattering amplitudes including Debye screening for neutral emitters. For charged emitters, the effect of plasma screening is estimated. The electron densities considered reach up to n(e) = 10(27) m(-3). Temperatures are between T = 10(4) and 10(5) K. The results are compared with a dynamically screened Born approximation for Lyman lines of H and H-like Li as well as for the He 3889 Å line. For the last, a comprehensive comparison to simulations and experiments is given. For the H Lyman-α line, the width and shift are drastically reduced by the Debye screening. In the T-matrix approach, the line shape is notably changed due to the dependence on the magnetic quantum number of the emitter, whereas the difference between spin-scattering channels is negligible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.89.023106 | DOI Listing |
Sci Rep
January 2025
SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Osaka, Japan.
Hydroxyapatite/zirconia (HAP/ZrO) composites were fabricated via the low-temperature mineralization sintering process (LMSP) at an extremely low temperature of 130 °C to enhance the mechanical properties of HAP and broaden its practical applications. For this purpose, 5-20 vol% calcia-stabilized ZrO were introduced into HAP, and HAP/ZrO nanoparticles, mixed with simulated body fluid, were densified under a uniaxial pressure of 800 MPa at 130 °C. At 10 vol% ZrO, the relative density of the HAP/ZrO composite was determined to be 88.
View Article and Find Full Text PDFAnal Methods
January 2025
Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, São Cristóvão, SE 49100-000, Brazil.
Analytical chemistry demands precise sample preparation methods to ensure accurate qualitative and quantitative determinations, especially those capable of clean-up and preconcentration of target analytes. Extraction plays a crucial role in enhancing the selectivity and sensitivity of analytical procedures. Thus, Energized Dispersive Guided Extraction (EDGE) has emerged as an innovative alternative to traditional methods, such as Soxhlet, maceration, and percolation, as well as modern techniques like Accelerated Solvent Extraction (ASE), Supercritical Fluid Extraction (SFE), and Microwave or Ultrasound Assisted Extraction (MAE and UAE).
View Article and Find Full Text PDFAbsorption spectroscopy is a widely used non-contact combustion diagnostic technique. HO is frequently used as the target molecule for combustion temperature measurement. However, correcting the baseline in broadened absorption spectroscopy under high pressure remains challenging.
View Article and Find Full Text PDFIn this paper, we propose an integrated method for windowing and matched filtering in the analog domain based on microwave photonic technology, which utilizes dispersion regulation of optical waveguide to achieve the windowing processing of broadband signals in the optical domain and the surface acoustic wave filter (SAWF) to achieve the following matched filtering processing in the radio frequency (RF) domain, thus realizing their integration processing in the analog domain. The proposed method is validated by simulation and experiment, in which the integrated processing of matched filtering and windowing in the analog domain for a linear frequency modulation (LFM) signal with a bandwidth of 1 GHz is carried out and the peak to sidelobe ratio (PSLR) of the output signal is -19.55 dB and the mainlobe width (MLW) broadens to 0.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China. Electronic address:
Background: Carbohydrates exhibit diverse functions and extensive biological activities and are notable in the field of life sciences. However, their inherent diversity and complexity-steaming from variations in isomeric monomers, glycosidic bonds, configurations, etc.-present considerable challenges in structural analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!