Kardar-Parisi-Zhang equation with spatially correlated noise: a unified picture from nonperturbative renormalization group.

Phys Rev E Stat Nonlin Soft Matter Phys

Sorbonne Universités, UPMC Univ. Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, LPTMC, F-75005 Paris, France and Instituto de Física, Facultad de Ingeniería, Universidad de la República, J.H.y Reissig 565, 11000 Montevideo, Uruguay.

Published: February 2014

We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) ∼ p(-2ρ) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of ρ and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of ρ, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.89.022108DOI Listing

Publication Analysis

Top Keywords

spatially correlated
8
correlated noise
8
nonperturbative renormalization
8
renormalization group
8
kpz equation
8
fixed point
8
kardar-parisi-zhang equation
4
equation spatially
4
noise unified
4
unified picture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!