Assessment of Alloxan-Induced Diabetic Rats as a Periodontal Disease Model Using a Selective Cyclooxygenase (COX)-2 Inhibitor.

J Toxicol Pathol

Department of Pathology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.

Published: July 2014

Several recent studies have reported that alloxan-treated rats with long-term hyperglycemia can develop naturally occurring periodontal disease (PD). Our previous studies detected dental caries in the same model. Therefore, these two lesions of different etiologies are expected to occur concurrently. In this study, we evaluated the use of diabetic rats as a PD model by employing a selective COX-2 inhibitor reported to be effective against PD. Six-week-old female F344 rats were divided into 3 groups: intact rats (control), alloxan-induced diabetic rats fed a standard diet (AL) and alloxan-induced diabetic rats fed a diet containing 0.01% etodolac (AL+Et). The animals were euthanized at 26 weeks of age, and their oral tissues were examined histopathologically. Gingivitis, marginal periodontitis and alveolar bone resorption were markedly enhanced along with dental caries in the AL group compared with the control group. However, the COX-2 inhibitor had no effect on periodontal inflammation in the AL+Et group. In addition, in the AL group, periodontitis was notably nonexistent around the normal molars, and gingivitis was scarcely worse than that in the control group. In the diabetic rats, the progression of periodontal inflammation was closely correlated with the severity of adjacent dental caries, and marginal periodontitis was frequently continuous with apical periodontitis. In conclusion, an alloxan-induced diabetic rat is not a model of PD but of dental caries. It is probable that in this model, hyperglycemia may enable crown caries to progress to apical periodontitis, while the associated inflammation may rostrally expand to surrounding periodontal tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110936PMC
http://dx.doi.org/10.1293/tox.2013-0064DOI Listing

Publication Analysis

Top Keywords

diabetic rats
20
alloxan-induced diabetic
16
dental caries
16
cox-2 inhibitor
12
rats
8
periodontal disease
8
rats fed
8
marginal periodontitis
8
control group
8
periodontal inflammation
8

Similar Publications

In treating type 2 diabetes, avoiding glucose reabsorption (glucotoxicity) and managing hyperglycemia are also important. A metabolic condition known as diabetes (type-2) is characterized by high blood sugar levels in comparison to normal Bilosomes (BLs) containing Dapagliflozin (Dapa) were formulated, optimized, and tested for oral therapeutic efficacy in the current investigation. Used the Box Behnken design to optimize the Dapa-BLs, formulated via a thin-film hydration technique.

View Article and Find Full Text PDF

A Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects.

ACS Biomater Sci Eng

January 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.

As common complications of diabetes, long-term hyperglycemia and inflammatory infiltration often lead to prolonged unhealing of chronic diabetic wounds. The natural hydrogel-containing plant polysaccharides were recorded to have effective hypoglycemic and anti-inflammatory effects. This study focused on the accelerating effect of diabetic wound healing of hydrogels doped with polysaccharide (DOP)─calcium carbonate (CaCO) microspheres, which have glucose-responsive insulin release and anti-inflammatory effects.

View Article and Find Full Text PDF

Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing.

Int J Biol Macromol

December 2024

Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:

Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.

View Article and Find Full Text PDF

Background/aims: Gestational Diabetes Mellitus (GDM) is a common complication during pregnancy, defined as diabetes diagnosed in the second or third trimester, often asymptomatic. This study investigates the therapeutic potential of olive leaf extracts and stem cells in mitigating GDM-induced complications, particularly focusing on renal function, oxidative stress, and pancreatic cell regeneration.

Methods: Measurements were made in gravid female rats with or without intraperitoneal administration of Streptozotocin (35 mg/kg body weight).

View Article and Find Full Text PDF

Background: Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!