Intracellular activation of cytotoxic agents: kinetic models for methylnitrosoureas and N-methyl-N'-nitro-N-nitrosoguanidine in cell culture.

Chem Res Toxicol

Drug Metabolism Department, Allergan, Inc., Irvine, California 92715.

Published: February 1992

The cytotoxic activity of N-methyl-N-nitrosourea (MNU), streptozotocin, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was determined in cell culture by using a P388 cell growth rate inhibition assay. These agents appear to have very different activities when inhibition is related to the agent concentration in the culture medium: ED50(C0) = 40 microM for MNNG to 875 microM for streptozotocin. The mechanism of action of these three agents involves conversion to the active methanediazonium ion and subsequent methylation of cellular macromolecules. As a consequence, the rates of conversion of the parent agent to the methylating species in the medium and within the cell are important parameters that also need to be considered to reach a more detailed understanding of the mechanism of action. In order to do this, a kinetic model has been developed to calculate the concentration of drug that is converted to active methylating species within the cell during the assay incubation period. The use of cell culture kinetic models was extended from simple compounds activated through solvolytic reactions (nitrosoureas) to an agent that undergoes selective intracellular activation (MNNG). By use of measured values for initial drug concentration, incubation time, and cell volume, as well as extracellular and intracellular chemical activation rate constants, the intracellular concentration, [P4], which represents the cumulative intracellular reaction products formed during the incubation period, was calculated and related to cytotoxicity. All three agents showed an ED50[P4] between 140 and 180 microM, and for MNNG, this ED50 was independent of extracellular sulfhydryl concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx00009a006DOI Listing

Publication Analysis

Top Keywords

cell culture
12
intracellular activation
8
kinetic models
8
microm mnng
8
mechanism action
8
three agents
8
methylating species
8
incubation period
8
cell
7
intracellular
5

Similar Publications

Blood transfusion plays a vital role in modern medicine, but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution, yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development, and EPO is among the most expensive media components.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a specialized network that maintains central nervous system homeostasis. Disruption of the BBB can lead to neuronal damage and contribute to neurodegenerative diseases like Parkinson's disease (PD), characterized by alpha-synuclein (αSN) aggregation, which forms intracellular inclusions. Mesenchymal stem cells (MSCs) have shown promise in alleviating the severity of neurological diseases through their paracrine secretions.

View Article and Find Full Text PDF

Endothelial Growth Media Components Alters SARS-CoV-2 Spike-Directed Growth Kinetics.

J Virol Methods

January 2025

Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Department of Virology, Immunology & Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.

Direct SARS-CoV-2 infection of endothelial cells is challenging to study in vitro. To examine whether endothelial cell culture conditions impact the ability of SARS-CoV-2 to infect cells, we evaluated the effects of commercial cell culture media composition on SARS-CoV-2 Spike-directed viral infection. In African Green Monkey kidney epithelial cells (VeroE6), we found that commercial cell culture media (EGM2) produced inhibitory effects on recombinant vesicular stomatitis virus (rVSV-SARS-CoV-2) growth that is not seen in Dulbecco's Modified Eagle Medium (DMEM).

View Article and Find Full Text PDF

Sensitive detection and propagation of brain-derived tau assemblies in HEK293 based wild-type tau seeding assays.

J Biol Chem

January 2025

UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, United Kingdom. Electronic address:

The assembly of tau into filaments defines tauopathies, a group of neurodegenerative diseases including Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The seeded aggregation of tau has been modelled in cell culture using pro-aggregant modifications such as truncation of N- and C-termini and point-mutations within the microtubule-binding repeat domain. This limits the applicability of research findings to sporadic disease, where aggregates contain wild-type, full-length tau.

View Article and Find Full Text PDF

Objective: To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies.

Method: The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!