Functional characterization of myeloid-derived suppressor cell subpopulations during the development of experimental arthritis.

Eur J Immunol

Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Pathogenic Biology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China.

Published: February 2015

Recent evidence indicates the existence of subpopulations of myeloid-derived suppressor cells (MDSCs) with distinct phenotypes and functions. Here, we characterized the role of MDSC subpopulations in the pathogenesis of autoimmune arthritis in a collagen-induced arthritis (CIA) mouse model. The splenic CD11b(+) Gr-1(+) MDSC population expanded in CIA mice, and these cells could be subdivided into polymorphonuclear (PMN) and mononuclear (MO) MDSC subpopulations based on Ly6C and Ly6G expression. During CIA, the proportion of splenic MO-MDSCs was increased in association with the severity of joint inflammation, while PMN-MDSCs were decreased. MO-MDSCs expressed higher levels of surface CD40 and CD86 protein, but lower levels of Il10, Tgfb1, Ccr5, and Cxcr2 mRNA. PMN-MDSCs exhibited a more potent capacity to suppress polyclonal T-cell proliferation in vitro, compared with MO-MDSCs. Moreover, the adoptive transfer of PMN-MDSCs, but not MO-MDSCs, decreased joint inflammation, accompanied by reduced levels of serum cytokine secretion and the frequencies of Th1 and Th17 cells in draining lymph nodes. These results suggest that there could be a shift from potently suppressive PMN-MDSCs to poorly suppressive MO-MDSCs during the development of experimental arthritis, which might reflect the failure of expanded MDSCs to suppress autoimmune arthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201444799DOI Listing

Publication Analysis

Top Keywords

myeloid-derived suppressor
8
development experimental
8
experimental arthritis
8
mdsc subpopulations
8
autoimmune arthritis
8
joint inflammation
8
arthritis
5
mo-mdscs
5
functional characterization
4
characterization myeloid-derived
4

Similar Publications

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells playing a critical role in immune suppression. In vitro-generated MDSCs are a convenient tool to study the properties of tumour-associated MDSCs. Here, we compared six protocols for in vitro generation of functional mouse MDSCs from bone marrow progenitors.

View Article and Find Full Text PDF

Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.

View Article and Find Full Text PDF

Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!