AI Article Synopsis

  • The study explored the synthesis of tin nanoparticles and tin/carbon composites in room temperature ionic liquids for improving anode materials in Li-ion batteries.
  • Characterization techniques, including HEXRD, XPS, and HRTEM, revealed that metallic β-Sn was produced with adjustable particle sizes ranging from 3 to 10 nm by altering the RTIL conditions.
  • The research highlighted challenges in electrochemical performance due to trapped ionic liquid in carbon nanotube pores, suggesting that structural properties of composites are crucial for enhancing lithium ion diffusion and overall battery performance.

Article Abstract

The aim of this work was to investigate the synthesis of tin nanoparticles (NPs) or tin/carbon composites, in room temperature ionic liquids (RTILs), that could be used as structured anode materials for Li-ion batteries. An innovative route for the synthesis of Sn nanoparticles in such media is successfully developed. Compositions, structures, sizes and morphologies of NPs were characterized by high-energy X-ray diffraction (HEXRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Our findings indicated that (i) metallic tetragonal β-Sn was obtained and (ii) the particle size could be tailored by tuning the nature of the RTILs, leading to nano-sized spherical particles with a diameter ranging from 3 to 10 nm depending on synthesis conditions. In order to investigate carbon composite materials for Li-ion batteries, Sn nanoparticles were successfully deposited on the surface of multi-wall carbon nanotubes (MWCNT). Moreover, electrochemical properties have been studied in relation to a structural study of the nanocomposites. The poor electrochemical performances as a negative electrode in Li-ion batteries is due to a significant amount of RTIL trapped within the pores of the nanotubes as revealed by XPS investigations. This dramatically affected the gravimetric capacity of the composites and limited the diffusion of lithium. The findings of this work however offer valuable insights into the exciting possibilities for synthesis of novel nano-sized particles and/or alloys (e.g. Sn-Cu, Sn-Co, Sn-Ni, etc.) and the importance of carbon morphology in metal pulverization during the alloying/dealloying process as well as prevention of ionic liquid trapping.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt02289kDOI Listing

Publication Analysis

Top Keywords

li-ion batteries
12
synthesis tin
8
room temperature
8
temperature ionic
8
ionic liquids
8
materials li-ion
8
synthesis
5
tin nanocrystals
4
nanocrystals room
4
liquids aim
4

Similar Publications

Ti Doping Decreases Mn and Ni Dissolution from High-Voltage LiNiMnO Cathodes.

ACS Mater Au

January 2025

Solid State and Structural Chemistry Unit, IISc, Bengaluru 560012, Karnataka, India.

LiNiMnO (LNMO), with its high operating voltage, is a favorable cathode material for lithium-ion batteries. However, Ni and Mn dissolution and the associated low cycle life limit their widespread adoption. In this work, we investigate titanium doping as a strategy to mitigate Mn and Ni dissolution from LNMO electrodes.

View Article and Find Full Text PDF

Significantly promoting the lithium-ion transport performances of MOFs-based electrolytes a strategy of introducing fluoro groups in the crystal frameworks.

Chem Commun (Camb)

January 2025

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Metal-organic frameworks (MOFs) with well-ordered channels are considered ideal solid-state electrolytes (SSEs) for lithium ionic conductors and are expected to be utilized in all-solid-state Li-ion batteries. However, the outstanding Li conductivity of MOFs, especially the properties at low temperatures, has become a crucial problem to overcome. Herein, a breakthrough is first realized to cope with this challenge a strategy of introducing fluoro-substituted bridging ligands in MOFs.

View Article and Find Full Text PDF

Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.

View Article and Find Full Text PDF

The Resurging of Hydrocarbon Gas as Early Sign of Battery Rollover Degradation.

ACS Appl Mater Interfaces

January 2025

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Gas analysis offers real-time critical insights into the various processes occurring within batteries. However, monitoring battery degradation through gas formation remains relatively underexplored. Traditional coin cell setups pose challenges for long-cycle experiments and do not accurately reflect real-life battery usage.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-ion batteries are crucial for the electric vehicle (EV) industry due to their high energy density, low discharge rate, and long lifespan, making accurate State of Charge (SOC) estimation important for performance improvement.
  • The proposed method combines the Thevenin 2RC battery model to capture the battery's non-linear dynamics with the Unscented Kalman Bucy Filter (UKBF) to enhance SOC estimation by dealing with measurement noise and nonlinearities.
  • A simulation in Matlab Simulink reveals that the UKBF outperforms other estimation methods like EKF and UKF, achieving a notably lower Root Mean Square Error (RMSE) of 0.003276 for SOC estimation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!