In plants, light determines chloroplast position; these organelles show avoidance and accumulation responses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thaliana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.12303DOI Listing

Publication Analysis

Top Keywords

kinesin-like proteins
8
chloroplast light-avoidance
8
physcomitrella patens
8
cytoskeletal elements
8
chloroplast photorelocation
8
actin filaments
8
chloroplast
7
actin
5
proteins kac1/2
4
kac1/2 regulate
4

Similar Publications

The cell cycle oscillator and spindle length set the speed of chromosome separation in Drosophila embryos.

Curr Biol

January 2025

Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA. Electronic address:

Anaphase is tightly controlled spatiotemporally to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer is a highly aggressive cancer with a poor prognosis, and this study focuses on TPX2 as a significant biomarker for it.
  • Through analysis of RNA sequencing and protein expression data, researchers found that TPX2 is significantly upregulated in pancreatic cancer tissues and serves as an independent prognostic factor.
  • Experiments showed that silencing TPX2 reduced cancer cell growth and spread, potentially by activating immune responses and disrupting the cancer cell cycle, highlighting its importance in diagnosing and managing pancreatic cancer.
View Article and Find Full Text PDF

Kinesin-like motor protein KIF23 maintains neural stem and progenitor cell pools in the developing cortex.

EMBO J

December 2024

Department of Developmental Neuroscience, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan.

Accurate mitotic division of neural stem and progenitor cells (NSPCs) is crucial for the coordinated generation of progenitors and mature neurons, which determines cortical size and structure. While mutations in the kinesin-like motor protein KIF23 gene have been recently linked to microcephaly in humans, the underlying mechanisms remain elusive. Here, we explore the pivotal role of KIF23 in embryonic cortical development.

View Article and Find Full Text PDF

Kinesin-like protein 18A (KIF18A) is a member of the kinesin family of molecular motor proteins, which utilise energy from the hydrolysis of adenosine triphosphate (ATP) to regulate critical cellular processes such as chromosome movement and microtubule dynamics. KIF18A plays a vital role in controlling microtubule length, which is crucial for maintaining proper cell function and division. Notably, increased expression levels of KIF18A have been observed in various types of cancer, indicating its potential involvement in tumour progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!