This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed during the study period. The virological surveillance showed that the majority of the circulating strains during the study period were antigenically related to the corresponding Southern Hemisphere vaccine strains except for the 2012 A(H3N2) viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.076208-0 | DOI Listing |
Vaccine X
October 2024
WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
We conducted a test negative study from November 2023 to June 2024, enrolling 4,367 children hospitalized with acute respiratory illness in Hong Kong. Among the children who tested negative for influenza virus and SARS-CoV-2, 56.8 % had received influenza vaccination.
View Article and Find Full Text PDFThe Canadian Sentinel Practitioner Surveillance Network (SPSN) reports interim 2024/25 vaccine effectiveness (VE) against acute respiratory illness due to laboratory-confirmed influenza during a delayed season of predominant A(H1N1)pdm09 and lower A(H3N2) co-circulation. Through mid-January, the risk of outpatient illness due to influenza A is reduced by about half among vaccinated vs unvaccinated individuals. Adjusted VE is 53% (95% CI: 36-65) against A(H1N1)pdm09, comprised of clades 5a.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong SAR, China.
In conclusion, the distinct evolution patterns of panzootic influenza A(H5Nx) compared to A(H1N1) and A(H3N2) complicate vaccine development. Effective strategies must consider these unique patterns and the impact of pre-existing immunity. Leveraging AI-based methods for optimized antigen design is essential to mitigate the potential impact of emerging antigenically variable strains and will provide valuable insights for developing more effective vaccines to prepare for future pandemics.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners - Epworth, Melbourne, VIC, Australia.
Mitigation measures against infectious aerosols are desperately needed. We aimed to: 1) compare germicidal ultraviolet radiation (GUV) at 254 nm (254-GUV) and 222 nm (222-GUV) with portable high efficiency particulate air (HEPA) filters to inactivate/remove airborne bacteriophage ϕX174, 2) measure the effect of air mixing on the effectiveness of 254-GUV, and 3) determine the relative susceptibility of ϕX174, SARS-CoV-2, and Influenza A(H3N2) to GUV (254 nm, 222 nm). A nebulizer generated ϕX174 laden aerosols in an occupied clinical room (sealed-low flow).
View Article and Find Full Text PDFAnnual epidemics of influenza result in 3-5 million cases of severe illness and more than 600 000 deaths. Severe forms of influenza are usually characterized by vascular endothelial cells damage. Thus, influenza A viruses, including subtypes A(H1N1)pdm09, A(H3N2), as well as highly pathogenic avian influenza viruses, can infect the vascular endothelium, leading to activation and subsequent dysfunction of these cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!