We studied the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in submerged culture, using glycerol as the carbon source. A rhamnolipid yield of 15.9 g/L was obtained with 40 g/L glycerol and 5 g/L sodium nitrate as nitrogen source after 7 days of cultivation. Structural analysis carried out at different cultivation periods showed that the four major mono-rhamnolipid homologues are present in higher proportion in the first 48 h. Over time, the corresponding four major di-rhamnolipid homologues predominated, representing about 75 % of the total rhamnolipids after 96 h. Physicochemical analysis of the rhamnolipid mixtures obtained at different cultivation periods showed that the sample obtained from the first day of cultivation had the lower critical micelle concentration (15.6 mg/L), which is probably related to the higher proportion of mono-rhamnolipids. The results presented here show that the composition of the mixture of rhamnolipid homologues produced by P. aeruginosa UFPEDA 614 varies over time and that this variation influences the physicochemical properties of the mixture. These findings can be used in order to produce rhamnolipid mixtures that have suitable properties for different applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-014-1343-y | DOI Listing |
ACS Appl Mater Interfaces
December 2024
College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China.
Blast disease caused by is a devastating disease that limits rice grain production. Here, we synthesized rhamnolipid (RL) modified silica nanoparticles (SiONPs) based on the excellent antimicrobial activity of RL against various phytopathogens and the role of SiONPs in alleviating plant diseases and investigated the roles and mechanisms of RL@SiONPs application in controlling rice blast disease. Two-week-old rice seedlings were sprayed with 100 mL/L of different materials before pathogen inoculation, and blast incidence was investigated 5 days after inoculation.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
Adsorption of rhamnolipid (RL) and surfactin (SF) as well as their mixtures with Triton X-100 (TX100) and Triton X-165 (TX165) at the solution-air (S-A), PTFE (polytetrafluoroethylene)-S, PMMA (poly (methyl methacrylate))-S, Q (quartz)-S, PMMA-A, and Q-A as well as their wetting properties regarding the surface tension of the PTFE, PMMA and quartz and its components and parameters were discussed using the literature data. The mutual influence of biosurfactants and Tritons on the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces tensions was considered in terms of their adsorption at these interfaces for both aqueous and water-ethanol solutions of the biosurfactant mixtures with Tritons. For this purpose there were used different methods on the basis of which the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interface tensions can be predicted and/or described in the function of concentration and composition of the mixtures.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
Chili anthracnose, caused by , causes significant yield loss in chili production. In this study, we investigated the elicitor properties of a rhamnolipid (RL)-enriched PA3 fraction derived from SWUC02 in inducing systemic resistance in yellow chili seedlings and antifungal activity against CFPL01 (Col). Fractionation of the ethyl acetate extract yielded 12 fractions, with PA3 demonstrating the most effective disease suppression, reducing the disease severity index to 4 ± 7.
View Article and Find Full Text PDFBioprocess Biosyst Eng
November 2024
School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!