Decreased expression of the SPOP gene is associated with poor prognosis in glioma.

Int J Oncol

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.

Published: January 2015

This study suggests that speckle-type POZ protein (SPOP) may be a tumor suppressor gene and its prognostic value in human glioma. Real-time quantitative RT-PCR (qRT‑PCR), western blotting, and immunohistochemical staining were used to examine SPOP expression in glioma tissues and normal brain (NB) tissues. The relationships between the SPOP expression levels, the clinicopathological factors, and patient survival were investigated. The molecular mechanisms of SPOP expression and its effects on cell viability, migration and invasion were also explored by MTT assay, wound-healing assays and Transwell assay. SPOP mRNA and protein levels were downregulated in glioma tissues compared to NB. Immunohistochemical staining results showed low expression in 62.2% (61/98) of glioma samples, while high expression in 75% (9/12) of NB samples, and the difference was statistically significant (P=0.014). In addition, decreased SPOP was associated disease progression in glioma samples, the expression level of SPOP was positively correlated with mean tumor diameter (MTD) (P=0.021) and the status of tumor grade and histological type (WHO I, II, III and IV) (P=0.032) in glioma patients. Additionally, the overall survival of patients with low SPOP expression was significantly worse than that of SPOP-high patients (P=0.001). In vitro overexpression of SPOP markedly inhibited cell viability, migration and invasion in vitro. These findings suggest that SPOP has potential use as novel biomarker of glioma and may serve as an independent predictive factor for prognosis of glioma patients.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2014.2729DOI Listing

Publication Analysis

Top Keywords

spop expression
16
spop
11
glioma
9
prognosis glioma
8
immunohistochemical staining
8
glioma tissues
8
cell viability
8
viability migration
8
migration invasion
8
glioma samples
8

Similar Publications

Background: Speckle-type POZ protein (SPOP), FAS-associated protein with death domain (FADD), and nuclear transcription factor-κB (NF-κB) have been shown to be associated with the development of prostate cancer (PCa). FADD has been shown to activate the NF-κB pathway to promote tumorigenesis, while SPOP has been shown to enhance the breakdown of FADD and inhibit the function of the NF-κB signaling pathway in non-small cell lung cancer. The existence of this mechanism has not yet been confirmed in PCa.

View Article and Find Full Text PDF

Cul3 substrate adaptor SPOP targets Nup153 for degradation.

Mol Biol Cell

January 2025

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.

SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP.

View Article and Find Full Text PDF

Spop deficiency impairs adipogenesis and promotes thermogenic capacity in mice.

PLoS Genet

December 2024

School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China.

As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1.

View Article and Find Full Text PDF

The androgen receptor (AR) is central in prostate tissue identity and differentiation, and controls normal growth-suppressive, prostate-specific gene expression. It also drives prostate tumorigenesis when hijacked for oncogenic transcription. The execution of growth-suppressive AR transcriptional programs in prostate cancer (PCa) and the potential for reactivation remain unclear.

View Article and Find Full Text PDF

Despite the abundance of somatic structural variations (SVs) in cancer, the underlying molecular mechanisms of their formation remain unclear. In the present study, we used 6,193 whole-genome sequenced tumors to study the contributions of transcription and DNA replication collisions to genome instability. After deconvoluting robust SV signatures in three independent pan-cancer cohorts, we detected transcription-dependent, replicated-strand bias, the expected footprint of transcription-replication collision (TRC), in large tandem duplications (TDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!