Restoration of extirpated species via captive breeding has typically relied on population viability as the primary criterion for evaluating success. This criterion is inadequate when species reintroduction is undertaken to restore ecological functions and interactions. Herein we report on the demographic and ecological outcomes of a five-decade-long population restoration program for a critically endangered species of "ecosystem engineer": the endemic Española giant Galapagos tortoise (Chelonoidis hoodensis). Our analysis of complementary datasets on tortoise demography and movement, tortoise-plant interactions and Española Island's vegetation history indicated that the repatriated tortoise population is secure from a strictly demographic perspective: about half of tortoises released on the island since 1975 were still alive in 2007, in situ reproduction is now significant, and future extinction risk is low with or without continued repatriation. Declining survival rates, somatic growth rates, and body condition of repatriates suggests, however, that resources for continued population growth are increasingly limited. Soil stable carbon isotope analyses indicated a pronounced shift toward woody plants in the recent history of the island's plant community, likely a legacy of changes in competitive relations between woody and herbaceous plants induced by now-eradicated feral goats and prolonged absence of tortoises. Woody plants are of concern because they block tortoise movement and hinder recruitment of cactus--a critical resource for tortoises. Tortoises restrict themselves to remnant cactus patches and areas of low woody plant density in the center of the island despite an apparent capacity to colonize a far greater range, likely because of a lack of cactus elsewhere on the island. We conclude that ecosystem-level criteria for success of species reintroduction efforts take much longer to achieve than population-level criteria; moreover, reinstatement of endangered species as fully functioning ecosystem engineers may often require large-scale habitat restoration efforts in concert with population restoration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211691PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110742PLOS

Publication Analysis

Top Keywords

species reintroduction
8
population restoration
8
endangered species
8
woody plants
8
tortoise
5
species
5
population
5
demographic outcomes
4
outcomes ecosystem
4
ecosystem implications
4

Similar Publications

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

Understanding social relationships in at-risk species held in captivity is vital for their welfare and potential reintroduction. In social species like the Przewalski's horse (), daily time allocation and space use may be influenced by social structure and, in turn, reflect welfare. Here, we identify social relationships, time budgets, and spatial distribution of a group of nine older (aged 6-21 years) male Przewalski's horses living in a non-breeding (bachelor) group.

View Article and Find Full Text PDF

Conservation and threatened status of plant species with extremely small populations in the karst region of southeastern Yunnan, China.

Front Plant Sci

December 2024

Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.

The southeastern Yunnan is one of the most typical areas in China with karst landforms. The rich variety of vegetation types and plant diversity means that threatened status are also synchronized. Over the past 20 years, the comprehensive conservation team for plant species with extremely small populations (PSESP) has conducted in-depth field surveys in the region, combining relevant literature and conservation projects to compile a list of PSESP which including conservation and endangered status, conservation actions, and scientific research.

View Article and Find Full Text PDF

Species reintroductions are increasingly seen as important methods of biodiversity restoration. Reintroductions of red kites Milvus milvus and white-tailed eagles Halieaeetus albicilla to Britain, which were extirpated in the late 19th and early 20th centuries, represent major conservation successes. Here, we measured stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in feather keratin and bone collagen of museum specimens of red kites and white-tailed eagles, which were collected from across Scotland between the 1800s and 2010s.

View Article and Find Full Text PDF

As a farmland species, the grey partridge is facing a drastic decline all over Europe. In Vipava Valley (Slovenia), the species was last observed around 20 years ago. In this region, an initiative for reintroducing grey partridges was put forward, with much effort dedicated to breeding partridges and monitoring breeding success in a closed area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!