Three cationic metal-organic frameworks (MOFs), Ag(btr)·PF6·0.5CH3CN (1), Ag2(btr)2(H2O)·2CF3SO3·H2O (2), and Ag2(btr)2(NO3)·NO3 (3), were prepared from reaction of 4,4'-bis(1,2,4-triazole) (btr) with silver salts containing different anions. Complex 1 is a three-dimensional (3-D) framework constructed from tetrahedral-shaped nanoscale coordination cages with PF6(-) as counteranions. 2 and 3 are 3-D architectures containing 1-D channels, in which charge-balancing CF3SO3(-) and NO3(-) are located in their respective channels. Luminescent emission of 1-3 shows an obvious red shift compared with the btr ligand. Anion exchange studies show that 1 is able to selectively exchange MnO4(-) in aqueous solution with a modest capacity of 0.56 mol mol(-1); the luminescent emission of 1 is quickly quenched upon MnO4(-) exchange.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic501978u | DOI Listing |
Int J Biol Macromol
January 2025
Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran. Electronic address:
The increasing prevalence of micropollutants like cationic and anionic dyes in wastewater creates an influential environmental challenge, mainly due to their toxic effects and persistence. Current methods often lack the efficiency and versatility to cope with a wide variety of contaminants. This study explores the modification of TEMPO-oxidized cellulose nanofibers (TOCNF) using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) to enhance their cationic properties.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Luminescent chiral metal-organic frameworks (CMOFs) are promising candidates for the enantioselective sensing of important chiral molecules. Herein, we report the synthesis and characterization of Zn and Cd CMOFs based on 1,1'-bi-2-naphthol (BINOL)-derived 3,3',6,6'-tetra(benzoic acids), H-OEt and H-OH. Four CMOFs, -OEt, -OH, -OEt, and -OH, based on these ligands were crystallographically characterized.
View Article and Find Full Text PDFWater Res
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China. Electronic address:
Emerging of the lattice oxygen mechanism (LOM) provides a new opportunity for enhancing oxygen evolution reaction (OER) activity. However, its stability suffers from metal cation dissolution and lattice oxygen anionic redox chemistry. In this paper, carbon dots (CDs)-modified nickel-iron MOF (Metal-Organic Framework) nanosheets (NiFe-BDC/CDs) were prepared for efficient OER electrocatalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!