Poly(methyl methacrylate) particles for local drug delivery using shock wave lithotripsy: In vitro proof of concept experiment.

J Biomed Mater Res B Appl Biomater

Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel.

Published: August 2015

AI Article Synopsis

  • The study explores the use of poly(methyl methacrylate) (PMMA) particles as drug carriers for localized drug delivery, utilizing shock wave lithotripsy (SWL) to control the release of the drug.
  • The researchers developed PMMA particles containing horseradish peroxidase (HRP) through a double emulsion technique and found that SWL effectively shatters the polymeric shell, facilitating drug release.
  • Results indicate a clear correlation between the number of shock waves applied and the amount of HRP released, suggesting that higher concentrations of PMMA particles enhance drug release when subjected to SWL.

Article Abstract

To leverage current local drug delivery systems methodology, there is vast use of polymeric particles serving as drug carriers to assure minimal invasive therapy with little systemic distribution of the released drug. There is an increasing interest in poly(methyl methacrylate) (PMMA) serving as carriers in drug delivery. The study aims to develop PMMA carriers for localized drug delivery and release system, combining innovative biomaterial technology and shock wave lithotripsy (SWL), and to study the effect of SWL on various concentrations of PMMA particles. We prepared PMMA particles that contain horseradish peroxidase (HRP) using a double emulsion technique, and investigated the mechanism of in vitro drug release from the carriers following exposure to SWL. We investigated the correlation between production method modifications, concentrations of the carriers subjected to SWL, and shock wave patterns. We successfully produced PMMA particles as drug carriers and stimulated the release of their contents by SWL; their polymeric shell can be shattered externally by SWL treatment, leading to release of the encapsulated drug. HRP enzyme activity was maintained following the encapsulation process and exposure to high dose of SWL pulses. Increased shock wave number results in increased shattering and greater fragmentation of PMMA particles. The results demonstrate a dose-response release of HRP; quantitation of the encapsulated HRP from the carriers rises with the number of SWL. Moreover, increased concentration of particles subjected to the same dose of SWL results in a significant increase of the total HRP release. Our research offers novel technique and insights into new, site-specific drug delivery and release systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33301DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
shock wave
16
pmma particles
16
drug
10
swl
9
polymethyl methacrylate
8
local drug
8
wave lithotripsy
8
drug carriers
8
delivery release
8

Similar Publications

Nitroxide-Containing Poly(2-oxazoline)s Show Dual-Stimuli-Responsive Behavior and Radical-Trapping Activity.

Biomacromolecules

January 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.

2,2,6,6-Tetramethylpiperidine--oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx).

View Article and Find Full Text PDF

Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer.

ACS Biomater Sci Eng

January 2025

Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.

Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.

View Article and Find Full Text PDF

Is it possible to return to skiing following long-construct spinal deformity surgery?

Spine Deform

January 2025

Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, NY, 10032, USA.

Background: Alpine skiing requires flexibility, endurance, strength and rotational ability, which may be lost after long fusions to the pelvis for adult spinal deformity (ASD). ASD patients may worry about their ability to return to skiing (RTS) postoperatively. There is currently insufficient data for spine surgeons to adequately address questions about when, or if, their patients might RTS.

View Article and Find Full Text PDF

The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases.

Discov Nano

January 2025

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.

Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary.

View Article and Find Full Text PDF

Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!