Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692431PMC
http://dx.doi.org/10.3791/51844DOI Listing

Publication Analysis

Top Keywords

freeze substitution
20
high-pressure freezing
16
plant tissues
12
freezing quick
8
quick freeze
8
transmission electron
8
electron microscopy
8
sample preparation
8
highest quality
8
freezing
5

Similar Publications

In this study, high performance porous starch was prepared by combining freeze-thawing and enzymatic hydrolysis with the aim of evaluating its potential as a starch emulsifier in Pickering emulsions. The results indicate that the combined treatment significantly altered the specific surface area of starch (from 0.3257 m/g to 1.

View Article and Find Full Text PDF

Background Information: Conventional Transmission Electron Microscopy analysis of biological samples often provides limited insights due to its inherent two-dimensional (2D) nature. This limitation hampers a comprehensive understanding of the three-dimensional (3D) complexity of cellular structures, occasionally leading to misinterpretations. Serial block-face scanning electron microscopy emerges as a powerful method for acquiring high-resolution 3D images of cellular volumes.

View Article and Find Full Text PDF

To improve the functional properties of corn starch, phosphorylase b (PB), hexokinase (HK), and alkaline phosphatase (AP) were used to produce enzyme-modified starches (PBMS, HKMS, and APMS). The results showed that enzyme-modified starches had different phosphorus contents and degrees of substitution. The presence of PO bonds and P-O-C bonds further demonstrated that phosphate groups were grafted into starch.

View Article and Find Full Text PDF

High Mechanical Cellulose-Based Aerogel Induced by Fe at Ambient Temperature and Pressure.

ACS Appl Mater Interfaces

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Nanocellulose aerogels are usually produced by methods such as freeze-drying or critical point drying, which have the disadvantages of high equipment requirements and high energy consumption. In this study, the Fe-containing ethanol bath was employed to dissolve and replace ice crystals in the prefrozen precursors of cellulose-based aerogels. The method achieved both solvent substitution and metal ion complexation and successfully prepared nanocellulose aerogels with a total solid concentration of 2.

View Article and Find Full Text PDF

Degree of sulfation of freeze-dried calcium alginate sulfate scaffolds dramatically influence healing rate of full-thickness diabetic wounds.

Int J Biol Macromol

December 2024

Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute, Tehran, Iran. Electronic address:

Diabetic foot ulcer (DFU) is a chronic and non-healing wound in all age categories with a high prevalence and mortality in the world. An ideal wound dressing for DFU should possess the ability of adsorbing high contents of exudate and actively promote wound healing. Here, we introduced the calcium alginate sulfate as a new biomaterial appropriate for use in wound dressing to promote the healing of full-thickness ulcers in a diabetic mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!