Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase-solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 10(3) M(-1) and 4.27 × 10(3) M(-1). Fourier transforms infrared spectroscopy indicated entrance of an O-CH₂ or OCH₃-C₆H₄-OCH₃ moiety of Red-Br-Nos in the β-CD or methyl-β-CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH₃-C₆H₄-OCH₃ moiety was closer to the H₅ proton of β-CD and the H₃ proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC₅₀ by ∼2-fold and ∼3-fold for Red-Br-Nos-β-CD-GGM and Red-Br-Nos-methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos-β-CD and Red-Br-Nos-methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255741PMC
http://dx.doi.org/10.1021/mp500408nDOI Listing

Publication Analysis

Top Keywords

β-cd methyl-β-cd
16
cyclodextrin complexes
8
reduced bromonoscapine
8
guar gum
8
gum microspheres
8
103 m-1
8
och₃-c₆h₄-och₃ moiety
8
red-br-nos β-cd
8
methyl-β-cd cavity
8
red-br-nos
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!