Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in Cftr(F508del) homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502695 | PMC |
http://dx.doi.org/10.4161/15548627.2014.973737 | DOI Listing |
Respir Res
December 2024
PRéTi, Université de Poitiers, Poitiers, France.
Background: Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel. For people with CF (pwCF) affected by the most common pathogenic variant F508del, a tritherapy, named Trikafta/Kaftrio (ETI: elexacaftor (VX-445) /tezacaftor (VX-661) / ivacaftor (VX-770)) was successfully developed. However, in CF airway epithelial cells the calcium homeostasis is also disturbed; it is observed an increased calcium mobilization in CF cells compared to non-CF cells.
View Article and Find Full Text PDFUnlabelled: Trikafta is well-known for correcting the thermal and gating defects caused by the most common cystic fibrosis mutation F508del in the human cystic fibrosis transmembrane conductance regulator even at physiological temperature. However, the exact pathway is still unclear. Here, the noncovalent interactions among two transmembrane domains (TMD 1 and TMD2), the regulatory (R) domain and two nucleotide binding domains (NBD1 and NBD2), along with the thermoring structures of NBD1, were analyzed around the active gating center.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary.
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the anion channel mutated in cystic fibrosis (CF) patients, is activated by the catalytic subunit of protein kinase A (PKA-C). PKA-C activates CFTR both noncatalytically, through binding, and catalytically, through phosphorylation of multiple serines in CFTR's regulatory (R) domain. Here, we identify key molecular determinants of the CFTR/PKA-C interaction essential for these processes.
View Article and Find Full Text PDFIntroduction: Ivacaftor (IVA) has been shown to change the trajectory of cystic fibrosis (CF) disease progression by slowing the rate of lung function decline in clinical studies. Long-term real-world data help to confirm the durability of this response.
Methods: This non-interventional, longitudinal study used data from the US CF Foundation Patient Registry to describe the annualized rate of change in lung function in people with CF receiving IVA.
J Med Chem
August 2024
Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
Cystic fibrosis (CF) is caused by the functional expression defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Despite the recent success in CFTR modulator development, the available correctors only partially restore the F508del-CFTR channel function, and several rare CF mutations show resistance to available drugs. We previously identified compound that synergistically rescued the F508del-CFTR folding defect in combination with the existing corrector drugs VX-809 and VX-661.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!