Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To evaluate the efficacy and effects of labeling equine umbilical cord blood (UCB)- and bone marrow (BM)-derived multipotent mesenchymal stromal cells (MSCs) with an ultrasmall superparamagnetic iron oxide (SPIO) contrast agent and the detection of labeled MSCs by use of MRI.
Sample: UCB MSCs from placental tissues of 5 foals and BM MSCs from 5 horses.
Procedures: UCB and BM MSC cultures were seeded in duplicate (5,000 cells/cm(2)). One duplicate was incubated with SPIO (50 μg/mL); the other was processed identically, but without SPIO. Mesenchymal stromal cells were expanded in triplicates for 5 passages and assessed for viability and proliferative capacity, labeling efficacy, and labeled cell proportion. For MRI detection, 5 × 10(6) labeled BM MSCs from passage 1 or 2 were injected into a collagenase-induced superficial digital flexor tendon defect of an equine cadaveric forelimb from 2 horses.
Results: For passages 1, 2, and 3, labeling efficacy and cell proportion for UCB MSCs (99.6% [range, 98.8% to 99.9%], 16.6% [range, 6.5% to 36.1%], and 1.0% [range, 0.4% to 2.8%], respectively) were significantly higher than for BM MSCs (99.2% [range, 97.8% to 99.7%], 4.5% [range, 1.6% to 11.8%], and 0.2% [range, 0.1% to 0.6%], respectively). Labeling was not detectable after passage 3. Viability of MSCs was not affected, but cell doubling time increased in labeled MSCs, compared with that of unlabeled MSCs. On MRI 3-D T2*-weighted fast gradient echo sequences, decreased signal intensity was observed for BM passage 1 MSCs.
Conclusions And Clinical Relevance: Equine UCB and BM MSCs were labeled with SPIO at high efficiencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.75.11.1010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!