Primitive endoderm differentiation: from specification to epithelium formation.

Philos Trans R Soc Lond B Biol Sci

Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France

Published: December 2014

In amniotes, primitive endoderm (PrE) plays important roles not only for nutrient support but also as an inductive tissue required for embryo patterning. PrE is an epithelial monolayer that is visible shortly before embryo implantation and is one of the first three cell lineages produced by the embryo. We review here the molecular mechanisms that have been uncovered during the past 10 years on PrE and epiblast cell lineage specification within the inner cell mass of the blastocyst and on their subsequent steps of differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216460PMC
http://dx.doi.org/10.1098/rstb.2013.0537DOI Listing

Publication Analysis

Top Keywords

primitive endoderm
8
endoderm differentiation
4
differentiation specification
4
specification epithelium
4
epithelium formation
4
formation amniotes
4
amniotes primitive
4
endoderm pre
4
pre plays
4
plays roles
4

Similar Publications

Spatial transcriptomic characterization of a Carnegie stage 7 human embryo.

Nat Cell Biol

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.

Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo.

View Article and Find Full Text PDF

Nup107 contributes to the maternal to zygotic transition by preventing the premature nuclear export of pri-miRNA 427.

Development

January 2025

Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.

View Article and Find Full Text PDF

Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination.

Life Sci Alliance

March 2025

https://ror.org/05f950310 Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium

Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac.

View Article and Find Full Text PDF

Understanding the mechanisms of hypoblast development and its role in the implantation is critical for improving farm animal reproduction, but it is hampered by the lack of research models. Here we report that a chemical cocktail (FGF4, BMP4, IL-6, XAV939, and A83-01) enables de novo derivation and long-term culture of bovine extraembryonic endoderm cells (bXENs). Transcriptomic and epigenomic analyses confirmed the identity of bXENs and revealed that they are resemble hypoblast lineages of early bovine peri-implantation embryos.

View Article and Find Full Text PDF

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!