In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp03527e | DOI Listing |
Langmuir
December 2024
School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
In the capacitive mixing technique, the electrode used to extract blue energy is typically composed of a carbon-based porous electrode material. Polyelectrolyte (PE) surface coating on porous electrodes serves as an intermediate soft layer, which can significantly enhance the energy extraction performance (EEP). Herein, the blue energy extraction performance by using PE-coated electrodes is studied by a statistical thermodynamic theory, with the exploration of the interplay effects between opposing polyelectrolyte interactions and pore size.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
Institut National de la Recherche Scientifique (INRS), Centre Énergie Materiaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada.
Sufficient sunlight absorption and exciton generation are critical for developing efficient nonfullerene organic solar cells (OSCs). In this work, polyelectrolyte polystyrenesulfonate (PSS)-coated plasmonic gold nanorods (GNRs@PSS) were incorporated, for the first time, into the inverted nonfullerene OSCs as rear interfacial modifiers to improve sunlight absorption and charge generation via the near-field plasmonic and backscattering effects. The plasmonic GNRs effectively improved the sunlight absorption and enhanced the charge generation.
View Article and Find Full Text PDFJ Phys Chem B
February 2018
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Understanding and controlling polyelectrolyte adsorption onto carbon nanotubes is a fundamental challenge in nanotechnology. Polyelectrolytes have been shown to stabilize nanotube suspensions through adsorbing onto the nanotube surface, and polyelectrolyte-coated nanotubes are emerging as building blocks for complex and addressable self-assembly. Conventional wisdom suggests that polyelectrolyte adsorption onto nanotubes is driven by specific chemical or van der Waals interactions.
View Article and Find Full Text PDFJ Nanobiotechnology
September 2015
Department of Interfaces, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany.
Background: Recent reports highlighting the role of particle geometry have suggested that anisotropy can affect the rate and the pathway of particle uptake by cells. Therefore, we investigate the internalization by cells of porous calcium carbonate particles with different shapes and anisotropies.
Results: We report here on a new method of the synthesis of polyelectrolyte coated calcium carbonate particles whose geometry was controlled by varying the mixing speed and time, pH value of the reaction solution, and ratio of the interacting salts used for particle formation.
Phys Chem Chem Phys
December 2014
Department of Applied Physics, School of Sciences, University of Granada, 18071, Granada, Spain.
In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!