Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences.

Phys Chem Chem Phys

Department of Applied Physics, School of Sciences, University of Granada, 18071, Granada, Spain.

Published: December 2014

In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp03527eDOI Listing

Publication Analysis

Top Keywords

polyelectrolyte-coated carbons
4
carbons generation
4
generation blue
4
energy
4
blue energy
4
energy salinity
4
salinity differences
4
differences work
4
work method
4
method production
4

Similar Publications

In the capacitive mixing technique, the electrode used to extract blue energy is typically composed of a carbon-based porous electrode material. Polyelectrolyte (PE) surface coating on porous electrodes serves as an intermediate soft layer, which can significantly enhance the energy extraction performance (EEP). Herein, the blue energy extraction performance by using PE-coated electrodes is studied by a statistical thermodynamic theory, with the exploration of the interplay effects between opposing polyelectrolyte interactions and pore size.

View Article and Find Full Text PDF

Sufficient sunlight absorption and exciton generation are critical for developing efficient nonfullerene organic solar cells (OSCs). In this work, polyelectrolyte polystyrenesulfonate (PSS)-coated plasmonic gold nanorods (GNRs@PSS) were incorporated, for the first time, into the inverted nonfullerene OSCs as rear interfacial modifiers to improve sunlight absorption and charge generation via the near-field plasmonic and backscattering effects. The plasmonic GNRs effectively improved the sunlight absorption and enhanced the charge generation.

View Article and Find Full Text PDF

Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion-Image Interactions.

J Phys Chem B

February 2018

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Understanding and controlling polyelectrolyte adsorption onto carbon nanotubes is a fundamental challenge in nanotechnology. Polyelectrolytes have been shown to stabilize nanotube suspensions through adsorbing onto the nanotube surface, and polyelectrolyte-coated nanotubes are emerging as building blocks for complex and addressable self-assembly. Conventional wisdom suggests that polyelectrolyte adsorption onto nanotubes is driven by specific chemical or van der Waals interactions.

View Article and Find Full Text PDF

Background: Recent reports highlighting the role of particle geometry have suggested that anisotropy can affect the rate and the pathway of particle uptake by cells. Therefore, we investigate the internalization by cells of porous calcium carbonate particles with different shapes and anisotropies.

Results: We report here on a new method of the synthesis of polyelectrolyte coated calcium carbonate particles whose geometry was controlled by varying the mixing speed and time, pH value of the reaction solution, and ratio of the interacting salts used for particle formation.

View Article and Find Full Text PDF

Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences.

Phys Chem Chem Phys

December 2014

Department of Applied Physics, School of Sciences, University of Granada, 18071, Granada, Spain.

In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!